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Abstract

This paper introduces a model of social preferences featuring a
single parameter representing an individual’s disposition to share re-
sources with others. The parameter reacts to observed behavior of
others in a clearly defined manner. Therefore, the model allows the
numerical analysis of reciprocal interaction. Based on evolutionary
concepts, the model is characterized by a very basic utility maximiza-
tion condition and it is consistent with and often predictive of the
results of a multitude of different behavioral games and phenomenon.
(JEL C71, C73, C90, C91, D03, D63, D64)

Keywords: other-regarding preferences, altruism, cooperation, evolu-
tion, reciprocity, welfare-tradeoff-ratio.

1 Introduction

There are currently several popular models in circulation covering different
aspects of social preferences. Some highlight the prominence of the equal split
(Fehr and Schmidt 1999; Bolton and Ockenfels 2000), some welfare concerns
(Charness and Rabin 2002), others reciprocity (Levine 1998; Dufwenberg
2004; Falk and Fischbacher 2006). Additionally, there is a growing economic
literature exposing various aversions and other behavioral irregularities (e.g.
Bohnet and Zeckhauser 2004; Charness and Dufwenberg 2006; Dana et al.
2007). While not all of these models and theories are mutually exclusive per
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se, they sometimes lead to different predictions (e.g. Engelmann and Strobel
2004). Moreover, critics are mocking the apparent tendency to come up
with a novel fix to the utility function for each newly discovered behavioral
phenomenon as the ”neo-classical repair shop” (Güth 1995). In the attempt
to make economic models of social behavior more realistic, they criticize,
the already implausible assumption of utility maximization is made even
less plausible by further complicating the function with additional elements.
In turn, though, economists usually counter that the ”as-if”-approach in
economics cares little for realism and all the more for mathematical analysis,
prediction and verifiability, there is no obvious reason why considering the
underlying cognitive processes of behavior must necessarily lead to inferior
economic models. In fact, this approach appears to be the most promising
one to develop an integrative theory of social preferences able to explain a
large variety of social behavior.

The model presented in this paper attempts just that. It considers the
underlying evolutionary mechanisms of altruism, reciprocity and cooperation
without sacrificing mathematical traceability. The model incorporates the
essence of other social preference models - the aforementioned prominence
of the equal split, welfare concerns, and reciprocity - and it accommodates
(and often predicts) not only the typical results of simple games like dictator
and ultimatum game, but also those of several other studies of behavioral
irregularities. Furthermore, it addresses the ”repair-shop-critics” by postu-
lating a first-order-condition for utility maximization that is both very basic
and - the author believes - resembles the actual cognitive process reasonably
closely. Essentially, the model uses only one dynamic parameter: the indi-
vidual’s disposition to share welfare. The dynamics behind this parameter
are based on concepts of evolutionary biology and evolutionary psychology.

The paper continues with a brief overview of those concepts in section
2. Section 3 presents the model and section 4 analyzes how it fares with
the results of different economic studies. Different aspects of the model,
including justification for important assumptions, challenges, and extensions
are discussed in section 5. Finally, section 6 offers the summary.

2 Evolutionary Background

2.1 Altruism

What utility is to Economics, fitness is to evolution: the ultimate driving
force behind behavior. Natural selection ensures that those specimens most
adept at surviving and reproducing eventually displace their less successful
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counterparts. Consequently, there should be no room for anything but purely
selfish behavior. Any truly altruistic act ultimately decreases the fitness of
the actor and increases the fitness of the recipient, eventually leading to the
extinction of the altruists. Hence, such behavior can not be evolutionary
successful. Yet, there is plenty of evidence for seemingly altruistic behavior
among many different species, e.g. suicidal hive defense by honey-bees, blood
sharing by vampire bats or alarm calls by birds, to name just a few. Darwin
himself acknowledged this paradox, declaring that truly altruistic behavior
would ”annihilate” his theory of natural selection (Darwin 1859).

It was not until Hamilton (1964) that a conclusive explanation for such
behavior was found.1 Because natural selection works on the level of the
gene, not on the level of the specimen, altruistic behavior can be evolutionary
stable if it satisfies the following inequation, later named Hamilton’s rule:

∑
rjbj ≥ ci (1)

The parameter rj is the genetic relatedness of recipient j to the actor i (i.e.
the probability that j shares a certain gene with i), bj the fitness benefits to
j and ci the fitness costs to i. In other words, a gene for altruistic behavior
is favored by natural selection if the total benefits for all other carriers of
the gene is higher than the costs to the individual performing the altruistic
act. This premise is satisfied, for example, if the carrier of the gene gives up
less than one unit of fitness to either transfer two units of fitness on a sibling
(with whom he shares one half of his genes2), or one unit on two siblings,
or eight units on one cousin (with whom he shares one eight of his genes)
and so on. This principle - coined ”kin selection” by Smith (1964) - can only
work if either individuals have the ability to detect their kin or if the natural
probability to interact with kin is high (which it often is as relatives are more
likely to be geographically close). Hamilton’s rule actually explains the vast
majority of altruistic behavior among fauna (Stevens et al. 2005).

2.2 Reciprocity and Cooperation

It is evident that humans often behave altruistically even towards non-kin
(e.g. sharing of food with non-relatives in need). Viewed in isolation, such

1Haldane (1955) had already grasped the idea in principle. He is often quoted to have
said that he would not give his life to save a drowning brother, but would do so if it were
two brothers or eight cousins, indicating that he was aware that individuals share one half
of their genes with their siblings and one eight with their cousins.

2Certain hive insects actually share 3/4 of their genes with their siblings, making it all
the more perspicuous why most suicidal altruism is found among these species.
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behavior obviously could not have evolved by natural selection because the
genes of the donor lose fitness. If, however, the recipient will reciprocate
the favor with some positive probability in the future, these benefits may
outweigh the initial costs, leading to a net-surplus. If the cost/benefit ratio
of the altruistic action is small, both the initial giver and the recipient can
be better off afterwards. Still, the question remains why the recipient should
bother to reciprocate. After all, he and his genes would be better off by
behaving selfishly (i.e. not reciprocating).

In his seminal article, Trivers (1971) showed that if altruists are able to
condition their future behavior on the observed behavior of the recipients,
such conditional altruism can be favored by natural selection. By curtail-
ing altruistic acts towards individuals that do not reciprocate, altruists can
restrict the bulk of fitness benefits to fellow altruists. Then, the portion of
altruists in the population increases if the following inequation holds:3

1

p2
(
∑

bk −
∑

cj) >
1

q2

∑
bm, (2)

with bk the benefit of the kth altruistic act performed towards the altruist,
cj the cost of the jth altruistic act of the altruist, bm the benefit of the mth
altruistic act towards a non-altruist and p and q the frequency of altruists
and non-altruists in the population, respectively. If the inequation holds, the
average net benefits of altruists exceed the net benefits of non-altruists. This
is more likely if there are many opportunities for altruistic behavior during
the lifetime, if individuals are exposed symmetrically to them and if there
is a small set of individuals with whom to interact repeatedly (for further
discussion, see also section 3.5).

With a simulation of iterated prisoner’s dilemma games, Axelrod and
Hamilton (1981) later demonstrated that cooperation among non-related in-
dividuals can be beneficial even if not-cooperating is a dominant strategy
(i.e. it yields higher benefits independent of the other’s action) in one-shot
encounters. When the number of future interactions is uncertain, TIT FOR
TAT (cooperating in the first round, then imitating the partner’s behavior
from the previous round) is an evolutionary stable strategy (ESS), meaning
that a population who has adopted it can not be invaded by other strate-
gies.4 Furthermore, Axelrod (1981) also showed that even a population of
consistent defectors can be invaded by TIT FOR TAT-individuals if those
are clustered initially and therefore have a high probability to interact with
cooperative kin instead of defectors.

3Formula taken from Trivers’ article.
4Technically, it is not a strict ESS because it can be invaded by other friendly (=coop-

erative) strategies which are indistinguishable in a TIT FOR TAT dominated population.
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2.3 Welfare Tradeoff Ratio and Emotions

Evolutionary psychologists view the brain as a processor carrying out com-
putations to solve recurrent adaptive problems. Its algorithms evolved under
natural selection to regulate behavior in the direction of improved genetic
fitness. Therefore, we should expect to find processes in the human brain
reflecting the principles of altruism and cooperation described above. The
cognitive variable regulating an individual’s disposition to give up his own re-
sources for the benefit of another individual has been called Welfare Tradeoff
Ratio (WTR) by Tooby and Cosmides (2008). There are at least two distinct
WTR: The intrinsic one intWTR is used when behavior is unobserved. It
should generally obey Hamilton’s Rule, making relatedness its major, though
not only, input parameter. The public one pubWTR is used when behavior
is observed by the recipient. It should be guided by the principles of co-
operation and reciprocity, although all parameters influencing the intrinsic

intWTR apply, too.
Behavior regulating variables like WTR must regularly be adjusted de-

pending on new information available to the individual (e.g. new information
about relatedness or recent behavior of the other person). However, since
there is a plethora of different variables and parameters continuously tracked
and evaluated by the brain, these adjustment processes generally can not
work on a deliberate level, not even for human beings. Instead, algorithms
are needed that, based on available cues, compel the individual towards be-
havior that - on average over an evolutionary timespan! - will be fitness
promoting. Such algorithms are emotions. Emotions are complex programs
that process different cues and stimuli to assign hedonic values to actions
which are then weighted in the decision process (Tooby and Cosmides 1990).

Consequently, humans should possess emotions that regulate an individ-
ual’s WTR in accordance with the principles of kin selection and reciprocity.
For one, there should be an emotion (or a set of emotions) that increases the
WTR if the recipient is related. Furthermore, another emotion is needed that
decreases the WTR, compelling the individual to curtail benefits or possibly
execute punishment, when the other person has displayed an inappropriately
low WTR himself, i.e. was unwilling to adequately transfer benefits. And
finally, emotions are required to induce and maintain positive reciprocity, i.e.
emotions that increase the own WTR if failure to do so would make others
withdraw benefits or execute punishment in return.

Love and Affection Transferring welfare to loved ones creates a positive
hedonic experience, often even if the action is unobserved by the recipient.
Hence, love and affection increase an individual’s WTR. Kinship is one
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major factor determining affection (Lieberman et al. 2007), demonstrated
for example in parental love. Other cues inducing love and affection are
friendship or sexual attraction, for example. Affection and love, however, are
typically not relevant factors in laboratory experiments, although they may
play a role in prolonged interpersonal economic relationships at some point.

Anger The function of anger is to re-calibrate others’ dispositions in favor
of the angry individual (Sell et al. 2009). It is triggered when observed
behavior of another person signals an inappropriately low WTR. When
angry, on the one hand the individual experiences a less positive or possibly
even negative sensation when transferring welfare to the other person. On
the other hand, punishment can lead to positive sensations (Fischbacher et al.
2004). Hence, observing inappropriately low WTR in others decreases one’s
own WTR towards them, possibly making it negative.

Guilt and Gratitude Reducing the WTR of others is undesirable, so a
mechanism should exist that avoids making others angry and instead induces
or keeps up positive reciprocity (Tooby and Cosmides 2008). There are two
different emotional programs accomplishing this: guilt and gratitude. On
the one hand, guilt induces a negative sensation when choosing or having
chosen an inappropriately low transfer oneself. To avoid this, the individual
exceeds his WTR. On the other hand, gratitude induces a positive sensation
when transferring benefits to a person who has made a higher transfer than
expected. Increasing the own WTR in respond to an observed high WTR
stabilizes cooperation.

This is of course a markedly simplifying description of a highly complex
emotional system that neither considers the entirety of all possible cues (so-
cial status, physical strength, life expectancy etc.) and emotional regulators
(jealousy, compassion, shame etc.) nor potential conjunctions among them
(e.g. repeated cooperation can lead to friendship, which in turn keeps the
WTR high without the constant need for reassurance through recent cues).
Nevertheless, these three sets of emotions should capture the core principles
for the evolution of altruism and reciprocity.
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3 The Model

3.1 The central parameter

The model adopts the idea of WTR in its central parameter εi,j (ε for es-
teem), player i’s willingness to transfer own payoff to player j. If positive,
εi,j is the ratio to which player i is willing to share a payoff X with player
j, i.e. εi,j =

xj

xi
, xi + xi = X. If negative, εi,j, is the negative ratio of own

to other payoff that player i is still willing to accept before destroying the
whole endowment. Hence, if εi,j = 1, player i divides the endowment equally
among both players. If εi,j = 0, player i is uninterested in j’s outcome and
keeps the whole endowment for himself. If εi,j = 1, player i is willing to
destroy the endowment to avoid any allocation where j’s payoff exceeds his
own. Therefore, the value of εi,j is also the relative value player i puts on
player j’s payoff compared to the value put on his own payoff. It can casually
be interpreted as a measure of i’s appreciation of j. Theoretically, εi,j can be
any number from −∞ to +∞, but it usually lies between −1 and +1 because
values above +1 are inefficiently altruistic and values below −1 inefficiently
spiteful.

!"

−1 0 1

non-interestedfully spiteful fully altruistic

extremely spiteful spiteful altruistic extremely altruistic

Figure 1: Range and classification of εi,j

3.2 The utility function

Player i prefers to allocate payoffs according to his effective εi,j. Therefore,
i behaves as if he were maximizing the following utility function:

Ui =
√

xi + sgn(εi,j xj) ·
√

|εi,j xj|, (3)

with xi and xj player i’s and j’s monetary payoff, respectively, and sgn
the sign-function (sng(a) = 1 if a > 0, sng(a) = −1 if a < 0 and sng(a) = 0
if a = 0). For positive εi,j,to maximize the expression, i has to solve the
following first order condition:
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xi =
1

εi,j

xj ⇔ εi,j xi = xj. (4)

Solving the maximization problem only requires player i to consider how
much he ”appreciates” player j, i.e. how much he values player j’s payoff
compared to his own and then allocate the pie accordingly. The author
believes that the cognitive process suggested by the model reflects both the
WTR concept and the actual decision process reasonably closely (at least for
an economic model).

3.3 Observability and reciprocity

Player i’s willingness to transfer welfare is not constant for all situations, but
variable. The changes to εi,j, however, follow certain rules that rest upon the
evolutionary principles presented in the preceding section:

1. Player i’s willingness to transfer welfare εi,j depends on the observabil-
ity of the action. The intrinsic disposition intεi,j when behavior is not
observed is never higher than the public willingness pubεi,j, i.e. intεi,j ≤
pubεi,j. In accordance with Hamilton’s rule, when the action is unob-
servable, i’s intrinsic willingness intεi,j is usually 0 (or close to 0) unless
i and j are related, which increases it. The public willingness pubεi,j

usually lies somewhere between 0 and 1 if there is no prior history
between both players.

2. Player i’s εi,j is also a function of j’s observed disposition obsεj,i. If the
observed εj,i differs from the reference disposition appεj,i that i consid-
ers ”appropriate”, i will adjust his own disposition accordingly with
ε′

i,j(appεj,i− obsεj,i) ≤ 0. This corresponds to the emotional programs of
anger and gratitude.

3. εi,j is also influenced by what constitutes the ”appropriate” appεi,j from
j’s perspective. If his initial iniεi,j is below that value, i adjusts it
upwards, i.e. ε′

i,j(appεi,j− iniεi,j) ≥ 0. This corresponds to the avoidance
of the emotion guilt and its effect should be much stronger when i’s
action is observed.

Which level of ε is considered appropriate depends on the exact circum-
stances (and the players must not necessarily agree about it), but there are
five general guidelines:

1. When both players are cooperating (i.e. contributing equally to the
provision of the pie), appε = 1, i.e. the equal split is the norm for
cooperative situations.
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2. When player i has announced his intention to choose εi,j beforehand,
it becomes appεi,j (unless the announced intention is already inappro-
priately low).

3. When player j has announced his expectation about εi,j through his
action, it becomes the standard appεi,j for player i. This expectations
must be reasonable, which usually means expεi,j ≤ 1.

4. When player j has revealed an appropriate εj,i, it becomes the appro-
priate response appεi,j for player i.

5. When none of these cases applies, player i considers his beliefs over
the population’s appε for the given situation, i.e. the social norm. His
initial pubεi,j already incorporates this belief. However, if i receives new
information about the social norm, he will update his pubεi,j accordingly.

If more than one of those rules apply in concert, they enhance the emo-
tional reaction accordingly. For example, if i signals his expectations εj,i ≥ x
and j announces εj,i ≥ x, but j’s action reveal εj,i < x, then i will be even
more angry (i.e. his εi,j will decrease more) than when j had not announced
his intention. Likewise, j would experience more guilt than had she not made
that announcement.

3.4 Noisy signals

When player i has a fixed endowment X to allocate and the whole possible
decision space xi = {0, X} available, each allocation directly reveals i’s εi,j

to player j. For example, if X = 10 and i chooses 8|2, player j knows
εi,j = 0.25. However, when the decision space is limited, the signal is more
ambiguous, but usually still carries some information value. For example, if
player i has to choose between the two allocations 8|2 and 5|5 and selects
8|2, player j only knows εi,j ≤ 0.52 because choosing 8|2 over 5|5 reveals√

8 +
√

εi,j2 ≥
√

5 +
√

εi,j5. Assuming player j has ex-ante beliefs over
the probability distribution of player i’s εi,j, she uses the new information
to update her beliefs accordingly. Similarly, if some other kind of noise is
introduced to the procedure, e.g. by implementing the possibility that the
final allocation was chosen by a random mechanism and not by i, player j
will take the increased uncertainty of the signal into account when estimating
εi,j. For player i, the decreased observability would let his chosen εi,j move
towards his intrinsic intεi,j.
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3.5 The Evolution of ε

3.5.1 Altruism and Reciprocity

player j player j
s 1-s s 1-s

player s R / R εj,iR

1+εj,i
/ R

1+εj,i
s

√
R /

√
R

√
εj,iR

1+εj,i
/

√
R

1+εj,i

i 1-s R
1+εi,j

/
εi,jR

1+εi,j
0 / 0 1-s

√
R

1+εi,j
/

√
εi,jR

1+εi,j
0 / 0

Payoffs Fitness

Figure 2: Example of social interaction

The evolution of ε and its regulatory programs is highly complex. It de-
pends on the type and frequency of interactive situations individuals face,
the exact payoffs for each situation, distribution of parameters and strate-
gies in the population, the probability for repeated interaction, intertemporal
discount factors, etc. To illustrate this, consider the following example, il-
lustrated in figure (2):

Pairs of individuals i and j perform a task (e.g. hunting) for an indefinite
number of periods. The probability that the game ends after a certain period
is 1−δ (Alternatively, δ is the discount factor between periods or a combina-
tion of both). Each individual is successful with probability s, in which case
he receives an amount R of a resource (e.g. food), which he can convert into
fitness with F (R) =

√
R, otherwise he receives nothing. If both individuals

are successful, both convert R into fitness. If only player i is successful, he
can transfer some of his resource R to the unsuccessful player j - revealing
εi,j - and vice versa.

However, such altruistic behavior is obviously fitness decreasing for each
individual, unless the partner is related with some positive probability. If
the partner shares the gene for unconditional transfers with probability p,
unconditionally transferring resources is fitness increasing for the altruistic
gene when ε < 4p2

(1−p2)2
, with the optimal ε = p2 (see A.3). Yet, even though

unconditional transfers increase the fitness of the altruistic gene, the fitness
of selfish genes increase even more because they profit from unconditional
transfers, too, but sustain no losses. As a result, the share of altruistic genes
in the population falls, decreasing in turn the probability p to encounter
another carrier. Since the upper limit for fitness increasing ε decreases in p,
the unconditional altruists will eventually fade out of the population (unless
they are geographically clustered, see Axelrod 1981).
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Obviously, the altruistic gene could do better by limiting transfers only
to other carriers of the gene. Provided the individuals possess the cognitive
ability to discern the behavior of their partner, altruistic individuals could
adapt to cease transfers towards free-riders, who evidently do not possess the
same altruistic gene. Such conditional behavior would spread among altru-
ists because it constitutes a clear improvement over unconditional transfers.
Eventually, all remaining altruists will be equipped with this ability. At this
point, altruists may be better off than free riders on an individual level if their

willingness to transfer is not too big (ε < 4
(

x
1−x2

)2
with x = δrs(1−s)

(1−δ)+δrs(1−s)
,

see A.4). If that is the case, it becomes negligible whether i and j actually
are related or not.5 Either way, altruists now will steadily increase their
share in the population (theoretically up to 100%). However, this state is
very vulnerable to shocks.

If a second type of altruists with lower willingness to transfer appears
either as a mutation of the original altruists or of the free riders, these indi-
viduals will have an advantage over the competition. These new altruists do
better than remaining free riders because they receive transfers from other
altruists and they do better than the original altruists because their trans-
fers are lower. Now, the optimal transfer an individual can make is the
lowest possible transfer that is not considered free riding and answered with
the termination of transfers. As a result, such ”minimalistic altruists” will
eventually dominate the population.

Evidently, the current reciprocity mechanism is too simplistic to keep co-
operation on a high level. An altruistic individual needs to react not only to
free riders, but to everybody who makes lower transfers than himself. There
are several feasible possibilities what such a reaction may look like. For exam-
ple, an individual could completely cease transfers when the partner makes
a lower transfer or he could just lower his own transfers to the level of the
partner’s. In comparison, on the one hand, the latter strategy provides the
higher fitness payoff because the individual continues to collect some trans-
fers from his partner. On the other hand, the former strategy puts higher
adaptive pressure on weak altruists. In any case, depending on the current
distribution of types and parameters in the population, both strategies are
potentially fitness increasing.

One way or the other, once strong altruists curtail their transfers to weak
altruists, weak altruists in turn can improve if they keep transfers from strong
altruist partners high. Assume partner j has already displayed a high will-
ingness to transfer and player i is now in the situation that he has to reveal

5Relatedness is good explanation how altruism initially got started, but it is not nec-
essary for its continued maintenance.

11



his own εi,j. Depending on the type of his partner j, any εi,j < εj,i results
either in j ceasing all future transfers (εj,i = 0) or in j replicating i’s lower
transfer (εj,i = εi,j) in all future rounds. In the first case, player i opti-

mally copies the observed εj,i if εj,i ≤ 4
(

ab
b2−a2

)2
with a = δs(1 − s) and

b = 1−δ(1−s+s2) (see A.5) and free rides otherwise. In the second case, he

optimally chooses εi,j = min[εj,i;
(

δs(1−s)
1−δ(1−s+s2)

)2

] (see A.6), i.e. he replicates

the observed transfer unless it is unduly high.
Eventually, replication of first movers’ transfers will spread across the

population and displace other types because it produces a higher expected fit-
ness than any other behavior of second movers. Then, when faced with a pop-

ulation of replicators, a first mover i optimally reveals εi,j =
(

1−δ
1−δ(1−s+s2)

)2

(see A.7), which is always copied by both possible types of replicators (see
A.7.1). At this point, the population will eventually drift towards an equilib-
rium in which each player makes transfers according to εi,j∗, irrespective of
his role. Both strategies ”transfer εi,j∗ unless the partner has revealed a lower
εj,i, in which case a) cease all transfer b) replicate the partner’s transfer”
form an evolutionary stable state (ESS) because neither can be successfully
invaded by individuals with a different strategy.

The example has illustrated how a population of (in an evolutionary sense
purely selfish) fitness maximizers develops altruism and reciprocity with the
initial spark of kin selection and later help of an anger system (decreasing
own transfer when observing low transfers) and a guilt & gratitude system
(replicating observed high transfers). The actual human evolution of altru-
ism and reciprocity is certainly, that goes without saying, indefinitely more
complex. Mixed equilibria may very well exist and of course there is no
reason to assume that we did actually reach an equilibrium at all - even
back in prehistorical times. We could very well still remain in some kind of
transition state, to this day adapting to the ever changing conditions of our
environment. This question, however, is far beyond the scope of this paper.
Nevertheless, the result that altruism increases with the share of altruists
in the population (proof 3 - proof 4), the value put on the future and the
frequency of opportunities for reciprocal behavior (proof 4 - proof 6) should
apply generally (see also Trivers 1971).6

6The theoretical foundations of evolutionary stable reciprocity are relatively simple, yet
intraspecies reciprocity is conspicuously rare in nature. Stevens et al. (2005) ascribe that
to the substantial cognitive requirements. These include individual recognition, memory
of former interactions and patience for delayed payoffs. While the first two are obviously
mandatory for reciprocity, many animals are able of both. Intertemporal discounting,
however, is probably crucial. In the example, as δ approaches 0, transfers break down.
While humans devalue monetary payoffs on the order of months, most animals devalue food
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3.5.2 Cooperation

When individuals cooperate, they work together to increase the size of the pie
that is distributed between them. There are some cooperative interactions
that are unproblematic because they yield stable and immediate benefits
for all participants. This is called mutualism. Other interactions require
at least one individual to forgo potential benefits. Consider the example
above: Although no individual can do better on its own in the ESS, the ESS
is not the most efficient solution possible. If the two players i and j could
agree up front to always transfer half of the resource R when applicable,
they could both increase their expected fitness (see A.8). However, unlike
the ESS, which is the natural point of convergence, there is no reason that
cooperation must necessarily evolve. With the agreement to share equally,
the eventual first mover i is actually worse off than the first mover in the
ESS. Therefore, first mover i would be tempted to make a smaller transfer
than agreed upon, revealing ε∗

i,j instead. If the second mover j ”accepts” and
replicates ε∗

i,j - her fitness maximizing reaction! - no arrangement will ever
be uphold.

For such cooperative arrangements to work, it is mandatory that the sec-
ond mover reacts to the broken agreement with anger and reduces her εj,i

sharply in return (e.g. to εj,i = 0) so that i would be better off honoring the
agreement (see A.9), even if this is not the fitness maximizing response. In
that case, either cooperative agreements will eventually vanish again because
they are broken too often and therefore offer no advantages over the ESS or
first movers will adapt to the harsh reactions of second movers by increasing
their willingness to uphold the agreement. There are several possible reasons
why and how this could happen. For example, if many distinct opportuni-
ties for cooperation occur during the lifetime, individuals may go through
an initial inefficient learning period in which agreements are broken more
frequently and still ultimately receive net benefits once cooperation becomes
more stable later.7 Also, if first and second mover roles are distributed rel-
atively even among all individuals, it is more likely that losses in the first
mover role are compensated with gains in the second mover role. Finally,
reputation building and social education (e.g. the social norm to keep one’s

on the order of seconds (Stevens and Hauser 2004). In that case, even if opportunities for
reciprocal interaction just lie a few minutes apart, the effective δ already is 0 and resources
are never shared. Also note that the discount rate is irrelevant for kin selection.

7As a side note, since each individual can potentially be a first mover or a second mover,
it is conceivable that first movers can anticipate the second mover’s reaction by considering
their own reaction in that role without having to actually experience it. Therefore, not
many first movers would choose to break the agreement and the inefficiency would be
small.
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promises) are also helpful in establishing cooperation. However, the exact
evolutionary process of non-mutualistic cooperation is not pivotal. The point
is that IF cooperative arrangements exist, those arrangements must be the
benchmark on which behavior is evaluated by the emotional system.

3.5.3 The Equal Split

Both mutualistic and non-mutualistic cooperation increase overall efficiency,
but there is no a-priori rule for how the generated surplus is allocated between
the parties. Theoretically, each amount that leaves an individual better off
than the outside option makes cooperation the preferred choice, even if the
partner receives a higher share. However, there are two reasons - besides its
intuitive appeal - why we should expect the equal split to evolve as the norm
for cooperation of individuals on equal terms. First, if an individual is en-
gaged in multiple cooperative interactions, keeping track of several different
agreed ratios and former interactions is cognitively taxing. The normative
rule to split equally reduces the cognitive task of choosing the correct ra-
tio and allows to classify and memorize each partner’s behavior as a binary
variable ”did split equally” and ”did not split equally”. Second, in order to
maximize the probability for successful cooperation, the individual probabil-
ity for defection should be minimized over all participants (e.g. maximizing
min[P (defect)i, P (defect)j]). Assuming this defection probability depends
directly on the size of the individual cooperative gain compared to the out-
side option, then - given equal outside options - the equal split is the optimal
allocation.

The equal split also has desirable properties from a group perspective.8

Although group selection has largely been rejected as a (strong) force in
evolution (Smith 1964), it is conceivable that as memes - units of social in-
formation (Dawkins 1976) - social norms of sharing resources equally even in
non-cooperative situations are favored in intergroup competition. If resources
have diminishing marginal returns, sharing them equally is efficiency opti-
mizing and groups adhering to such a norm would ceter paribus be stronger
than those that do not. Therefore, social norms of sharing and cooperation
tend to be particularly philanthropic and charitable towards group members,
even if those assertion and reality will often diverge.

However, despite its generally desirable properties, the equal split is not
always feasible, in particular when the interacting individuals are different in

8Maxims and morals promoting such behavior can be found in many societies, for
example ”Regard your neighbor’s gain as your own gain, and your neighbor’s loss as your
own loss”, Laozi (Suzuki and Carus 2008) or ”Love your neighbor as you love yourself ”,
Luke 10:27.

14



one aspect or another. For example, in non-mutualistic cooperations, more
able individuals usually are less willing to share equally because they are
more likely to be in a position where they have to forgo benefits. Returning
to the example above, if player i’s probability for success is si and player
j’s probability for success is sj with si > sj, then player i may actually be
better off not interacting with player j at all instead of agreeing to the equal
split (see A.10). Similarly, if both players value future payoffs differently, the
equal split is not equally attractive to both and one player may not be patient
enough to honor any agreement to share equally while the other would be
(see A.9). Furthermore, at times, a player may prefer the equal split to not
cooperating, but nevertheless feel entitled to a bigger share, for example when
his outside option is better. Similarly, a player who can inflict higher costs
on his parter or who has invested more cooperative effort may feel entitled to
more than the equal share. In these situations, the advantaged player may
try to enforce an allocation rule that favors him, e.g. splitting the cooperative
surplus instead of the total amount of resources when outside options differ
(which would minimize the probability for defection) or allocating the surplus
according to the ratio of the outside options. However, there is no universally
valid solution for these situation and self-serving bias is to be expected on
both sides. Nevertheless, regardless of those exceptions, among equals, the
equal split should in general be the standard for cooperative interactions.

4 Applications

In this section, the WTR-model is applied to a number of common economic
games and studies.

4.1 Dictator Game

In the dictator game, player i divides an endowment X between himself and
player j, thereby directly revealing εi,j. Maximizing

Ui =
√

xi + sgn(εi,j)
√

|εi,j(X − xi)|, (5)

yields

xi =
1

1 + εi,j

X ⇔ xj =
εi,j

1 + εi,j

X ⇔ εi,j =
X − xi

xi

(6)
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4.2 Ultimatum Game

In the ultimatum game, player i proposes an allocation of an endowment X
between himself and player j. If j agrees to the proposed allocation, it is paid
out. Otherwise, both players receive nothing. Since both players’ consent is
needed for the implementation of the allocation, the ultimatum game can be
considered a cooperative situation, so the appropriate offer from player i is
X
2
, i.e. appεi,j = 1 (at the very least from player j’s perspective).
Except for the very unlikely case that player j is deeply spiteful (εj,i ≤

−1), she will always accept the appropriate offer of X
2

(εi,j = 1). Any lower
offer, however, decreases εj,i because ε′

j,i(appεi,j −obs εi,j) ≤ 0. This leads to
the rejection of the offer if εj,i decreases to such a degree that player j prefers
the payoff of zero for both players to the proposed allocation, i.e.

0 >
√

X − xi + sgn(εj,i)
√

|εj,i xi| (7)

or

εj,i < 1 − X

xi

(8)

Player i never offers less than
εi,j

1+εi,j
X, but may offer more if he beliefs

that player j will reject the offer with some positive probability.

4.3 Falk et al. 2003

Falk et al. (2003) showed that identical offers in ultimatum games can lead to
different rejection rates depending on the choices available to the proposer.
In their study, proposers could choose between two different allocations, one
of which was always 8 points for the proposer and 2 points for the recipient
(8|2). The recipients in turn were gradually less likely to accept the 8|2
proposal when the alternative was 10|0, 8|2, 2|8 and 5|5, respectively.

As discussed in section 3.4, in this setting, proposer i’s choice of 8|2 reveals
less about εi,j than it would in a regular ultimatum game. Choosing 8|2 over
10|0 signals εi,j ≥ 0.056), while selecting 8|2 when the alternative is also 8|2
obviously reveals nothing about εi,j. Furthermore, the choice of 8|2 over 2|8
reveals εi,j ≤ 1 and over 5|5, it reveals εi,j ≤ 0.52. If recipient j initially had
beliefs over the distribution of εi,j that assigned a positive probability to at
least one value below 0.056, between 0.056 and 0.52, between 0.52 and 1 and
above 1, then updating those beliefs with the information received through
i’s choice for 8|2 yields expected values of εi,j that are ordered accordingly
to the observed rejection rates.
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4.4 Engelmann & Strobel 2004 and comments

Engelmann and Strobel (2004) let subjects choose among three different al-
locations of money for three players. In all decisions, the decider had very
little or no own payoff at stake. Engelmann and Strobel found that efficiency-
and maximin-preferences as proposed in Charness and Rabin (2002) describe
their results better than the models of inequity-aversion by Fehr and Schmidt
(1999) and Bolton and Ockenfels (2000). The WTR-model, however, also
predicts efficiency- and maximin-like preferences when the decider has no
self-interest in the outcome.

For example, assume player i has to choose between allocation A =
ai|aj|ak and allocation B = bi|bj|bk, has no own payoff at stake (ai = bi) and
has equal positive disposition towards both players j and k (εi,j = εi,k > 0).
When aj ≥ bj and ak ≥ bk (and at least one true inequality), then player i
always strictly prefers the more efficient allocation A. Furthermore, when the
efficiency of both allocations is equal and aj = bj + c, ak + c = bk, c > 0, then
player i will display Rawlsian preferences and choose allocation A because
the utility function is concave in the other players’ payoffs.

In their comment on the paper, Bolton and Ockenfels (2006) remark that
despite the results of Engelmann and Strobel, people display a much lower
willingness to pay for efficiency than for equality. According to the WTR-
Model, if player i can choose between allocation a|b and allocation a−x|b+1
(a ≥ 1, b > 0), there always exists a positive value of x that makes player i
prefer the second allocation if εi,j > 0. The maximum acceptable value of x
strictly decreases in b and if b ≥ a, then x < 1 unless εi,j > 1 (see appendix
A.1 for proofs). Therefore, for any given a, player i is always willing to pay
more to increase the payoff of a player who has less than him (i.e. to increase
equality) than to increase the payoff of a player who has more (i.e. to increase
efficiency).

For good measure, Bolton and Ockenfels also present a pair of payoff
allocations for six players in which the decider always receives 8 and the other
five players receive either 8|8|8|15|1 or 2|2|2|33|2. The first allocation is picked
by 94% of all subjects even though it violates both efficiency- and maximin-
preferences (but decreases inequality as measured by Fehr and Schmidt as
well as Bolton and Ockenfels). According to the WTR-model, assuming
the decider’s ε is the same towards each of the five other players, the first
allocation is strictly prefered if ε > 0.
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4.5 Dana et. al 2007

The study of Dana et al. (2007) has a between-subject design in which par-
ticipants made decisions in three different two-player and one three-player
dictator-game-like situations. In the baseline treatment, the dictator sim-
ply had to decide between a 6|1 and a 5|5 allocation. In the hidden payoff
treatment, the dictator was given the choice between two partly hidden al-
locations, 6|? and a 5|?. He was informed that a coin flip had determined
the receiver’s payoff for each allocation and that the possible two pairs were
either 6|1, 5|5 or 6|5, 5|1. If desired, the dictator could view the result of the
coin toss without costs by pressing a button. Furthermore, the dictator knew
that the receiver was not informed about whether the button was actually
pressed or not. Finally, the plausible deniability treatment was similar to the
baseline treatment with the following exception: After the dictator had one
minute to contemplate, the decision between 6|1 and 5|5 had to be made in a
ten second time window during which the dictator could possibly be cut off
by the experimental software. If that happened, one of the two allocations
was chosen randomly. The cut-off, while random, was set up in such a way
that it allowed the dictator plenty of time to make the decision if so desired.

The results showed that while 74% (14 of 19) of the dictators chose 5|5
in the baseline treatment, only 56% (18 of 32) chose to reveal the concealed
outcomes in the hidden payoff treatment. Those 44% leaving the outcomes
hidden predominantly choose 6|? (12 of 14). In the plausible deniability
treatment, 75% of the dicators made their choice before being cut off, but
only 45% of them picked the fair allocation 5|5. Dana et al. conclude that
while people feel the compulsion to give, they actually do not inherently
value the other’s payoff that much. Instead, they use the ”moral wiggle
room” provided in the experiment to act more selfishly. The WTR-model
generally agrees with Dana and his co-authors that the intrinsic willingness
to transfer resources is lower than the one displayed publicly (intε < pubε). It
also allows a more detailed analysis of their results:

By choosing 6|1 over 5|5, player i signals εi,j ≤ 0.03 (
√

5 +
√

εi,j5 ≤√
6 +

√
εi,j1), which is quite low and close to 0, therefore not particularly

kind. In fact, the choice allows for the possibility that i is acting not only
out of selfishness, but out of spite (εi,j < 0). Overall, the signal is so negative
that only a minority of dictators is willing to make this choice in the baseline
treatment. In contrast, the signal of the concealed allocation 6|? in the
hidden payoff treatment - although not ”nicer” in the sense that it signals a
higher εi,j - is at least less negative. Selecting 6|? implies not only preferring
6|1 over 5|5, but also 6|5 over 5/1. The latter signals εi,j ≥ −0.03, i.e. the
dictator is basically disinterested in the other’s payoff, but is not spiteful
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either. Since the receiver is not informed whether the dictator has revealed
the actual allocations or not, the signal is strictly for the dictator himself.
Apparently, the guilt system reacts differently to the signals εi,j ≤ 0.03 and
−0.03 ≤pub εi,j ≤ 0.03. Contemplating the former induces enough guilt to
increase εi,j to such an extend that 5|5 is chosen in the baseline treatment,
while contemplating the latter does not.

In the plausible deniability treatment, receivers did not know if the payoff
relevant allocation was chosen by the dictator or by chance. To the receiver,
this decreased the signaling effect of the outcome to some extend. On the one
hand, if the final payoff is 6|1, it is still possible the dictator has εi,j ≥ 0.03
(if he chose 5|5, but was cut off). On the other hand, if the payoff is 5|5,
the dictator may still have εi,j ≤ 0.03 (if he chose 6|1, but was cut off),
too. This makes it more likely that the dictator chooses a lower transfer
than he usually would under full observation. Ultimately, if he knew the
receiver (wrongfully) believed that all payoffs were decided by pure chance,
the dictator would choose according to his intrinsic intεi,j.

4.6 Dana et. al 2006

Dana et al. (2006) gave subjects the option to silently exit a $10-dictator
game and take $9 instead. About one third of their subjects took that option,
even though they could have secured a higher payoff by choosing a transfer
of $0 in the dictator game. This model offers an explanation for this result
using the difference between intεi,j and pubεi,j. When i deliberates the choice
between the exit option and the dictator game, he is unobserved by j and
hence uses his intrinsic willingness to transfer payoff in his deliberations,
aware, however, that intεi,j will change to pubεi,j once the public dictator
game is entered. Therefore, i will choose to exit if the anticipated choice in
the dictator game leaves his intrinsically motivated self worse off than taking
the $9, i.e.

√
1

1 +pub εi,j

$10 +

√
intεi,j

pubεi,j

1 + pubεi,j

$10 <
√

$9 . (9)

If, for example, intεi,j = 0, then i will strictly prefer the exit option if

pubεi,j ≥ 1
9
.

4.7 Trust Game

Instead of the version of the game initially developed by Berg et al. (1995),
in order to focus on the aspects unique to the trust game, this analysis looks
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at a variant of the game in which both players i and j start out with the
same endowment X and assume for the same reason that no action of the
first mover i is motivated by altruism. Player i can now transfer any amount
x up to X to player j. If he does so, the amount is multiplied by m > 1
(typically m = 2 or m = 3) and added to j’s endowment. Then, if i chooses
to transfer a positive amount x, he does so because he expects j to make a
back-transfer y that leaves i with more than his original endowment X, i.e.
y > x. Which amount player i optimally send depends on the parameters X
and m and his expectations about player j’s εj,i.

When j receives xm from i, she will make a back transfer

y = max[
X(εj,i − 1) + εj,i x(m + 1)

1 + εj,i

; 0],

which, if positive, increases with the initial transfer x and of course εj,i,
but decreases in the initial endowment X (see A.2). However, player j will
only make a positive back transfer if her willingness to transfer exceeds a
certain threshold εj,i > X

X−x(m+1)
, which increases in X and decreases in

x and m (if x > 0). Furthermore, looking at the ratio of back transfer
to received amount g = y

mx
, notably, this ratio increases in the initially

transfered amount x for a given willingness to transfer εj,i unless εj,i = 1,
in which case player j always sends back 50% of what she received from
player i. This is interesting because it offers an explaination for the increase
of relative back transfers with increasing initial transfers that is often found
in trust games (e.g. Sapienza et al. 2007) that does not rely on perceived
kindness and reciprocity. After all, it is not a conclusively settled question
whether a higher initial transfer by player i is in fact ”nicer” or just more
risky when the sender’s intention is to get a sufficiently large back transfer
instead of increasing the recipient’s final payoff.

Solving for player i’s optimal transfer is rather complex even if i is risk
neutral. Just using player i’s expectation about the average εj,i in the pop-
ulation of recipients is not sufficient because back transfers are not linear in
εj,i. Instead, the expectations about the distribution of εj,i would have to be
considered. To simplify the analysis, consider only a binary-choice version of
the trust game in which player i can either send his whole endowment X or
nothing at all. In response, player j can either make a back transfer so that
both players end up with the same payoff (y = X(m+1)

2
) or keep everything

for herself.
Player j makes the back transfer y = X(m+1)

2
if she prefers the allocation

X(m+1)
2

/X(m+1)
2

over X(m + 1)/0. This is the case if εj,i ≥ 3 −
√

23 ≈ 0.172.
Therefore, if player i is only concerned with his own payoff (εj,i = 0), he
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should make the initial transfer if he beliefs that the percentage p of recipients

with εj,i ≥ 3 −
√

23 is at least
√

2
m+1

.9

4.8 Betrayal Aversion

Betrayal aversion was first discovered by Bohnet and Zeckhauser (2004), who
compared subjects’ choices in a binary-choice trust game with a risky dictator
game in which the payoffs of both players were determined by chance. First
mover i could either opt out of the game and secure a payoff of 10|10 for both
players, or he could enter the game, in which case depending on the treatment
either second mover j or a random mechanism chose between 8|22 or 15|15.
For both treatments, they elicited the minimum acceptable probability for
the outcome 15|15 so that first movers would choose to enter the game. On
average, first movers were willing to accept a lower probability for 15|15 in
the risky dictator game than in the trust game. Bohnet and Zeckhauser
concluded that first movers suffer betrayal costs when second movers choose
8|22, but that no such costs exist if the result occurred by chance.

The WTR-model agrees with this explanation. The first mover i enters

the risky dictator game if the probability P (15|15) ≥
√

10+
√

10εi,j−
√

8−
√

22εi,j√
15+

√
15εi,j−

√
8−

√
22εi,j

.

In the trust game, however, he chooses differently because of possible anger.
The second mover j will prefer 15|15 over 8|22 if εj,i > 0.61, so if the trust
game were equivalent to the risky decision, player i would enter it if P (εj,i >

0.61) ≥
√

10+
√

10εi,j−
√

8−
√

22εi,j√
15+

√
15εi,j−

√
8−

√
22εi,j

. However, player i’s εi,j changes depending

on j’s choice. By opting into the game, player i signals player j that he
expects εj,i > 0.61. Since this is a cooperative situation, this expectation is
appropriate. Therefore, player j can do little to positively surprise player i,
which would raise i’s εi,j through gratitude. An increased εi,j would have
made the allocation 15|15 even more attractive to i and made him accept a
lower probability P (εj,i > 0.61) to enter the trust game. However, if player
j chooses 8|22, revealing εj,i < 0.61, player i will become angry, i.e. his
original εi,j decreases to angεi,j. If player i anticipates this reaction, he will

only accept a probability P (εj,i > 0.61) ≥
√

10+
√

10εi,j−
√

8−
√

22 angεi,j√
15+

√
15εi,j−

√
8−

√
22 angεi,j

, which

is higher than the probability required to enter the risky dictator game.

9Using the utility function of the model in the context of risk is a bit ominous since
it always implies risk aversion. Since the focus is not on risk, however, I simply accept
this and do not dig deeper into the issue for now, although I can not help but find it at
least pleasingly coherent that (from my subjective impression) risk aversion seems to be
the more ”natural” state of mind while risk neutrality is usually learned.
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4.9 Guilt and Disappointment Aversion

Charness and Dufwenberg (2006) let subjects play a kind of trust game in
which the first mover i had to decide between the option out and in. If out
was chosen, both players received a payoff of 5. Otherwise, player j had to
decide between rolling a dice or not rolling it. When she chose not to roll,
j received a payoff of 14 and i a payoff of 0. Otherwise, j received a payoff
of 10 for sure and i received 0 with probability 1

6
and 12 with probability 5

6
.

Furthermore, in the treatment condition, the second mover j could send a
non-binding message to i before he made his decision to opt in or out. Most
second movers used this message to promise the first mover to roll the dice if
given the chance. The results showed that player i was more likely to choose
the in option after receiving such a promise. Likewise, j was more likely to
indeed roll the dice when she had previously promised to. Additionally, the
message increased both i’s beliefs about the probability of j choosing to roll
and j’s beliefs about i’s beliefs.

These results are in line with the WTR-model. Choosing to roll the dice
over not rolling it requires just εj,i ≥ 0.04. By opting into the game, first
mover i signals his expectation εj,i ≥ 0.04. If second mover j announces his
willingness to roll the dice, it further increases first mover i’s expectations
that j will indeed display εj,i ≥ 0.04. Then, if player j instead reveals
εj,i < 0.04 by not rolling the dice, player i will experience more anger if
j has made a promise than when she has not (according to the model).
Unfortunately, Charness and Dufwenberg did not elicit anger or mood, but
it seems reasonable to presume that i’s increased beliefs about the probability
of j rolling the dice do in fact translate into increased anger if this expectation
is not met. The key issue, however, is that second movers j, as expected,
react with stronger guilt, i.e. contemplating not rolling the dice increases
more guilt after a promise, which leads to a stronger increase in εj,i, which
makes j more likely to actually roll the dice when given the chance.

Although second movers apparently are aware that a promise changes
the first movers’ expectations, it is not clear whether they are purposely
trying to avoid anger when they increase their willingness to roll the dice.
That question was approached by Vanberg (2008), who slightly modified the
above game by randomly re-assigning half of the pairs of first and second
movers after the message from the second mover was sent. Only the second
mover j was informed if her partner was switched or not. If her first-mover
was switched, the second mover was also informed about the message the new
partner had received previously. Overall, second movers were more likely to
choose rolling the dice when they had sent a message containing a promise
to do so irrespective of whether their partner was switched or not. On the
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other hand, the message a re-assigned first mover received before the switch
had very little influence on the second mover’s disposition to choose roll.
Vanberg concluded that people have an inherent preference for keeping their
promises, but not for avoiding to let others down.

At first sight, this conclusion seems to contradict the assumption that
individuals try to avoid anger in others. However, while the experimental
design by Vanberg was certainly clever, such situations are virtually impos-
sible in real life. For basically all conceivable circumstances, keeping one’s
promise is tantamount to avoiding disappointment while an inclination to
keep one’s promise requires less cognitive resources and is less error prone
than considering the possible expectation of another individual. Therefore,
Vanberg’s results do not contradict the evolutionary approach of the WTR-
model (on the contrary).

5 Discussion

5.1 Challenges and Extensions

5.1.1 Jealousy

Both outcome- and intention-based models offer explanations for why players
reject unequal offers in the ultimatum game. At the same time, both types
of models run into different problems with modifications of the game. For
example, outcome-based models are at a loss when rejection rates change
depending on alternative options not chosen by the proposer, while intention-
based models cannot explain any rejections when offers are not made by the
other player but some kind of non-interested mechanism. Combining both
outcomes and intentions, the WTR-model can explain both, but while the
former modification is easily dealt with (see 4.3), the latter is a little bit
more problematic. For example, receiver j rejects an offer of 2|8 if εj,i <
−0.25. If such an offer does not come from player i but, for instance, a
random mechanism, player j’s εj,i has not shifted from its ”natural” state.
By implication, player j should also prefer 2|0 over 10|8, which seems very
implausible.

The problem could be solved by postulating different εi,j when player
i’s payoff is higher than player j’s (ε>

i,j) and when player i’s is lower (ε<
i,j).

Assuming ε>
i,j ≥ ε<

i,j, then player i may be willing to reduce player j’s payoff
when behind, but not when ahead. This adjustment would partly resemble
the model of Fehr and Schmidt (1999), but would not be so strict to impose
ε<

i,j < 0 for all players. However, while there probably is some truth to the
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general idea, it adds another parameter to the model, so there is a trade off
between model fit and degrees of freedom.10

5.1.2 Procedural Fairness

In the study of Blount (1995), subjects were more likely to reject unfair
ultimatum game offers when those were made by a disinterested third party
than when made by a random mechanism. Similarly, Bolton and Ockenfels
(2005) found lower rejection rates when the random process was fair (i.e.
equal probabilities for good and bad outcome) than when it was unfair (i.e.
higher probability for bad outcome). Obviously, these results can not be
explained by any of the aforementioned models, including the basic WTR-
model. However, a simple extension of the the WTR-model that is in line
with its evolutionary explanation may integrate procedural fairness into the
framework.

The first question that needs to be answered is why individuals would
care about the fairness of a disinterested third party or procedure? Or more
precisely, why do some individuals prefer to destroy payoffs when either the
third party or the procedure appears to be unfair? After all, it only hurts
themselves and another non-responsible person. Such behavior only makes
sense in an evolutionary scenario. In nature, truly disinterested third parties
that nevertheless distribute resources do not exist. When individuals receive
benefits from others, the distributors always have some kind of interest in
the receiver. Either they expect a reciprocal response or - more applicable
here - they are to some degree intrinsically concerned about the well-being of
the recipient. They may, however, have varying degrees of intrinsic interest
in different individuals. For example, parents may prefer to give more food
to offspring with higher probability of survival or with certain traits.

If an individual observes the distributor displaying an inappropriately low
disposition towards itself, the individual becomes angry in order to evoke a
favorable adjustment of the distributor’s disposition. Yet, for some reason,
it cannot directly withdraw benefits from the distributor.11 It can, however,

10It would also be interesting to find out to what degree a framing effect is responsible for
the relatively large rejection rates of unfair offers - around 20% or higher in Falk and Fehr
(2003); Bolton and Ockenfels (2005); Blount (1995). It is conceivable that if individuals
were asked to choose between the two allocations 0|0 and 2|8 instead of accepting or
rejecting 2|8, more players would choose 2|8 because the psychological effect of choosing
2|8 over 0|0 (being kind to the other player) may be different from not rejecting 2|8
(accepting heteronomous unfairness).

11There may be no direct stream of resources from the individual towards the distributor,
the individual may lack the physical ability necessary for such an act or the act may simply
be to risky.

24



impair the distributor indirectly by destroying (some of) the allocated re-
source. Since the distributor is intrinsically interested in the welfare of the
angry individual, he may prefer changing the allocation to the destruction
of the resource. This effect is even stronger if the angry individual also de-
stroys the other recipient’s resources, especially if by choosing an allocating
favoring him, the distributor has revealed a higher intrinsic interest in that
recipient.

To illustrate, assume that X is the amount set aside by distributor i to be
distributed among receivers j and k and that distributor i prefers to bestow
xj to receiver j and xk = X−xj to receiver k. Then we denote the ratio

xj

xk
as

iεj,k (and iεk,j = iε−1
j,k). iεj,k = 1 implies that distributor i values the welfare

of both receivers equally, while iεj,k > 1 and iεj,k < 1 imply favoritism of
receiver i and receiver j, respectively. Generally, the appropriate disposition
for distributor i is iεj,k = 1, although variations may exist similar to those
described in 3.3 and 3.5.3. Deviations from the appropriate i

appεj,k alter
recipient j’s jεj,k analogously to deviations from a direct interaction partner,
although the effect should tend to be weaker than direct interaction, i.e.
ε′

j,k(
i
appεj,k −i

obs εj,k) ≤ 0 and |ε′
j,k(

i
appεj,k −i

obs εj,k)| ≤ |ε′
j,k(

k
appεj,k −k

obs εj,k)|.12

As a result, recipient j is more likely to reject an allocation of 2|8 when it is
made by a ”real” decision maker than by a fair random mechanism and also
more likely to reject such an allocation made by an unfair mechanism than
by a fair mechanism.

Usually, distributor i’s iεj,k can be observed directly from the chosen allo-
cation. If the distributor chooses a random mechanism, iεj,k can be calculated
as follows. If the chosen lottery leads to allocation xj,1|xk,1 with probability

p and to xj,2|xk,2 with probability (1 − p), then iεj,k =
pxj,1+(1−p)xj,2

pxk,1+(1−p)xk,2
. There-

fore, a procedure is ”appropriate” if it yields the same expected outcome to
each player. Since utility is concave in payoffs, players consider a lottery
that yields each player a payoff of x in expectations equally ”appropriate”
(or ”fair” or ”kind”) as a secure allocation of x|x, but they would prefer the
secure allocation over the lottery.

5.1.3 Multiplayer Situations

The model is primarily designed to work in two-player-scenarios, but when
decision makers have no own payoff at stake like in 4.4, it can be applied
to multiplayer-scenarios without problems. When decisions do affect their
own payoff as well as that of multiple agents, however, decision makers may

12Of course, this also decreases recipient j’s disposition towards distributor i, but j has
no means to express that directly.
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either consider their own payoff in relation to the combined group payoff
or in relation to each individual. Accordingly, there are two possible utility
functions:

Ui =
√

xi +
n∑

j=1

1

n
sgn(εi,j xj)

√
|εi,j xj| (10)

Ui =
√

xi +
n∑

j=1

sgn(εi,j xj)
√

|εi,j xj| (11)

For example, given these two utility functions, an individual i with εi,j =
εi,k = 1 would choose the allocations 6|3|3 and 4|4|4, respectively, when
dividing an endowment of 12. The former suggests that i considers the
combined payoff of the other individuals while the latter suggests that i
values payoff of each individual as much as his own and it also corresponds
to the idea that ε = 1 represents the peak of other regarding concerns.

6 Summary

The WTR-model adds a new approach to the economic literature on social
preferences. By employing a single dynamic parameter that is sensitive to
observed behavior of others, the model is able to combine outcome- and
intention-based aspects. The single parameter allows for comparative nu-
merical analysis of interaction between players without relying on first- and
second-order beliefs or psychological utility which are often difficult to pin-
point explicitly.

To the author’s knowledge, the WTR-model is the first economic model
that considers the underlying evolutionary and psychological mechanisms of
altruism, reciprocity, and cooperation. The WTR-model assumes that indi-
viduals are inherently selfish and not intrinsically interested in non-related
others unless they find themselves in a social interaction. Then, most indi-
viduals feel compelled to help those who are worse off than themselves and
to honor (implicit) agreements for cooperation. Unlike models of inequality
aversion, the WTR-model does not claim that individuals suffer from disutil-
ity when payoffs are unequal, but instead suggests that they receive positive
utility when transferring recourses to others.

Section 4 demonstrated how the results of different games and studies
can be explained using the WTR-model. This suggests that the model is
consistent with a wide variety of behavioral phenomena. The next step would
be to test the WTR-model on more studies to further assess its range and also
its shortcomings. Ultimately, we need to develop experiments that explicitly
test the predictions of the model against competing explanations.
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The model also crucially relies on the idea of a normative reference be-
havior that is used to assess own and others’ behavior. Although some pre-
liminary concepts about the emergence of such norms are introduced in the
paper, this area definitely warrants further research, too.
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A Proofs

A.1 Proof I

Given a ≥ 1, b ≥ 0 and x > 0, player i never prefers a − x/b + 1 over a/b
when εi,j ≤ 0. Now, if 0 < εi,j ≤ 1,13 i prefers a − x/b + 1 over a/b when

√
a − x +

√
εi,j (b + 1) ≥ √

a +
√

εi,j b

⇔
√

a − x ≥ √
a +

√
εi,j b −

√
εi,j (b + 1)

⇔
√

a − x ≥ √
a − √

εi,j

(√
b + 1 −

√
b
)

︸ ︷︷ ︸
≤1

(12)

The right-hand term is always non-negative, therefore i will accept any x
that satisfies the following condition:

√
a − x ≥ √

a − √
εi,j

(√
b + 1 −

√
b
)

⇔a − x ≥ a − 2
√

εi,j a
(√

b + 1 −
√

b
)

+ εi,j

(√
b + 1 −

√
b
)2

⇔x ≤ 2
√

εi,j a
(√

b + 1 −
√

b
)

− εi,j

(√
b + 1 −

√
b
)2

(13)

Since
√

εi,j a ≥ εi,j and
√

b + 1−
√

b > (
√

b + 1−
√

b)2, there always exists a
positive x player i would accept and the maximum x given by the right hand
expression. If b > a,

The first derivative of this expression with respect to b yields
√

εi,j ab −
√

εi,j a(b + 1) + 2bεi,j − 2εi,j

√
b(b + 1) + εi,j√

b(b + 1)
(14)

which becomes negative if

√
εi,j ab −

√
εi,j a(b + 1) + 2bεi,j − 2εi,j

√
b(b + 1) + εi,j < 0

⇔√
εi,j(2b + 1 −

√
b(b + 1)) <

√
a(

√
b + 1 −

√
b)

⇔√
εi,j <

√
a(

√
b + 1 −

√
b)

b + 1 −
√

b(b + 1) + b

⇔εi,j <
a

(
√

b + 1 −
√

b)2

(15)

13The general results would remain the same if a < 1 and εi,j > 1 were allowed. However,
the restrictions assure that x < a, i.e. i does not end up with a negative payoff.
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which is always true under the given assumptions. Hence, x decreases as b
increases.

Furthermore, if a = b, the expression for x becomes

x ≤ 2
√

εi,j b
(√

b + 1 −
√

b
)

− εi,j

(√
b + 1 −

√
b
)2

⇔x ≤ (2
√

εi,j + 2εi,j) (
√

b(b + 1) − b)︸ ︷︷ ︸
<0.5

−εi,j
(16)

Under the restriction 0 < εi,j ≤ 1, the expression reaches its maximum
when εi,j = 1, which results in xa=b < 1. Since x decreases as b increases,
x < 1∀b ≥ a.

A.2 Proof II

Player j chooses her back transfer y so that the first order condition (4) is
satisfied. However, y is restricted to non-negative values.

εj,i(X + mx − y) = X − x + y

⇔y =
X(εj,i − 1) + εj,i x(m + 1)

1 + εj,i

y ≥ 0 ⇒y = max[
X(εj,i − 1) + εj,i x(m + 1)

1 + εj,i

; 0]

(17)

If y > 0, the back transfer y decreases in X, but increases in x, m(if x > 0)
and of course εj,i.

∂
(εj,i−1)+εj,i x(m+1)

1+εj,i

∂X
=

εj,i − 1

εj,i + 1
< 0 (18)

∂
(εj,i−1)+εj,i x(m+1)

1+εj,i

∂x
=

εj,i(m + 1)

1 + εj,i

> 0 (19)

∂
(εj,i−1)+εj,i x(m+1)

1+εj,i

∂m
=

εj,ix

1 + εj,i

> 0 (20)

∂
(εj,i−1)+εj,i x(m+1)

1+εj,i

∂εj,i

=
x(m + 1) + 2X

(1 + εj,i)2
> 0 (21)
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Player j chooses y > 0 if her εj,i exceeds a certain threshold.

X(εj,i − 1) + εj,i x(m + 1)

1 + εj,i

> 0

⇔εj,i (X − x(m + 1)) > X

⇔εj,i >
X

X − x(m + 1)

(22)

The minimum εj,i necessary for a positive back transfer y increases in X, but
decreases in x and m (if x > 0) .

∂ X
X−x(m+1)

∂X
=

x(m + 1)

(X + x(m + 1))2
> 0 (23)

∂ X
X−x(m+1)

∂x
= − X(m + 1)

(X + x(m + 1))2
< 0 (24)

∂ X
X−x(m+1)

∂m
= − xX

(X + x(m + 1))2
< 0 (25)

A.3 Proof III

Assume proportion p of the population shares the altruistic gene that compels
its carrier i to unconditionally make positive transfers (i.e. ε > 0) to his
partner j each time only i is successful, i’s expected fitness from a single
interaction is given by:

EF = s2
√

R︸ ︷︷ ︸
both successful

+ s(1 − s)

√
R

1 + ε︸ ︷︷ ︸
i successful,

j unsuccessful

+ p s(1 − s)

√
εR

1 + ε︸ ︷︷ ︸
i unsuccessful,

j successful
and also a carrier

. (26)

Unconditionally transferring is fitness improving if its expected fitness is
larger than the expected fitness of never transferring, which is s

√
R. partner

j each time only i is successful, i’s expected fitness from a single interaction
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is given by:

s
√

R < s2
√

R + s(1 − s)

√
R

1 + ε
+ p s(1 − s)

√
εR

1 + ε

⇔ 1 < s + (1 − s)

√
1

1 + ε
+ p (1 − s)

√
ε

1 + ε

⇔ 1 <

√
1

1 + ε
+ p

√
ε

1 + ε

⇔
√

1 + ε < 1 + r
√

ε

⇔ ε < 2p
√

ε + p2ε

⇔ ε <
4p2

(1 − p2)2

(27)

The first derivative of (26) is

EF
′
=

s(s − 1)
(√

εR
1+ε

− p
√

εR
1+ε

)

2
√

ε(ε + 1)
, (28)

which becomes 0 if
√

εR

1 + ε
− p

√
R

1 + ε
= 0

⇔ ε = p2

(29)

The second derivative of (26) is

EF
′′

=
(1 − s)s

(
−4pε

√
εR
1+ε

− p
√

εR
1+ε

+ 3ε2
√

R
1+ε

)

4ε2(1 + ε)2
, (30)

which becomes negative if

− 4pε

√
εR

1 + ε
− p

√
εR

1 + ε
+ 3ε2

√
R

1 + ε
< 0

⇔ 3ε
3
2 < 4p3 + p.

(31)

If ε = p2, then (31) becomes 3p3 < 4p3+p, which is always true for positive p.
Therefore ε∗ = p2 is the optimal willingness to transfer and ε∗R

1+ε∗ the optimal
unconditonal transfer.
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A.4 Proof IV

Assume that proportion p of the population consists of (related) altruists
and 1 − p of free riders. All altruists will stop their transfers once they have
observed that their partner is a free rider. All individuals discount each
round with δ.

Free Riders: Each round, free rider ifr is successful and receives R with
probability s. With probability s(1 − s), ifr is unsuccessful, but his partner
j is successful. Then, with probability p, his partner j is an altruist who
transfers

εj,iR

1+εj,i
if ifr has not yet revealed himself as a free rider. Each round,

ifr’s free rider type is revealed with probability s(1-s). A free rider’s expected
fitness therefore is given by

EFifr
=

s
√

R

1 − δ
+

ps(1 − s)
√

εj,iR

1+εj,i

1 − δ(1 − s + s2)
(32)

Conditional Altruists: Conditional altruist ica always receives R when
both he and j are successful. This happens with probability s2 each round.
With probability p, his partner j is also an altruist (εj,i = εi,j). Then, when

j was successful but ica was not, ica always receives a transfer of
εi,jR

1+εi,j
from

j vice versa. Each case occurs with probability s(1 − s). With probability
(1 − p), j is a free rider. Then, when ica is successful and j is not, ica makes
a transfer only if he has not yet learned j’s type. Once j has revealed herself
to be a free rider, ica ceases all transfer. The conditional altruist’s expected
fitness is therefore given by

EFca =
s2

√
R

1 − δ
+

ps(1 − s)
(√

R
1+εi,j

+
√

εj,iR

1+εj,i

)

1 − δ
+

(1 − p)s(1 − s)




√
R

1+εi,j

1 − δ(1 − s + s2)
+ δ

( √
R

1 − δ
− (1 − s + s2)

√
R

1 − δ(1 − s + s2)

)


(33)

Conditional altruists are doing better than free riders if

EFfr < EFca

⇔ s
√

R

1 − δ
+

ps(1 − s)
√

εR
1+ε

1 − δ(1 − s + s2)
<
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s2
√

R

1 − δ
+

ps(1 − s)
√

R
1+ε

+
√

εR
1+ε

1 − δ
+

(1 − p)s(1 − s)




√
R

1+ε

1 − δ(1 − s + s2)
+ δ

( √
R

1 − δ
− (1 − s + s2)

√
R

1 − δ(1 − s + s2)

)


⇔s(1 − s)

1 − δ
+

ps(1 − s)
√

ε
1+ε

1 − δ(1 − s + s2)
< ps(1 − s)

√
1

1+ε
+

√
ε

1+ε

1 − δ
+

(1 − p)s(1 − s)




√
1

1+ε

1 − δ(1 − s + s2)
+ δ

(
1

1 − δ
− (1 − s + s2)

1 − δ(1 − s + s2)

)


⇔ 1

1 − δ
+ p

√
ε

1+ε

1 − δ(1 − s + s2)
< p

√
1

1+ε
+

√
ε

1+ε

1 − δ
+

(1 − p)




√
1

1+ε

1 − δ(1 − s + s2)
+ δ

(
1

1 − δ
− (1 − s + s2)

1 − δ(1 − s + s2)

)


⇔1 +
δp

1 − δ
+ p

√
ε

1+ε

1 − δ(1 − s + s2)
< p

√
1

1+ε
+

√
ε

1+ε

1 − δ
+

(1 − p)




√
1

1+ε

1 − δ(1 − s + s2)
− δ

(1 − s + s2)

1 − δ(1 − s + s2)




⇔(1 − δ)(1 − δ(1 − s + s2)) + δp(1 − δ(1 − s + s2)) + p(1 − δ)

√
ε

1 + ε
<

p(1 − δ(1 − s + s2)(

√
1

1 + ε
+

√
ε

1 + ε
)+

(1 − p)

(
(1 − δ)

√
1

1 + ε
− δ(1 − δ)(1 − s + s2)

)

⇔δps(1 − s) + (1 − δ) <

δps(1 − s)

√
ε

1 + ε
+ (δps(1 − s) + (1 − δ))

√
1

1 + ε

⇔1 <

√
ε

1 + ε

δps(1 − s)

δps(1 − s) + (1 − δ)
+

√
1

1 + ε

⇔
√

1 + ε <
√

ε
δps(1 − s)

δps(1 − s) + (1 − δ)
+ 1
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Denoting δps(1−s)
δps(1−s)+(1−δ)

as x, we get

⇔1 + ε < εx2 + 2
√

εx + 1

⇔ε(1 − x2)2 < 4x2

⇔ε <
4x2

(1 − x2)2

(34)

The first derivative of that expression with respect to x is

∂ 4x2

(1−x2)2

∂x
= −8(x3 + x)

(x2 − 1)3
. (35)

Since 0 < x < 1, the expression is always > 0. The first derivatives of x with
respect to δ, p and s are

∂ δps(1−s)
δps(1−s)+(1−δ)

∂δ
=

ps(1 − s)

(δδps(1 − s) + (1 − δ))2 > 0 (36)

∂ δps(1−s)
δps(1−s)+(1−δ)

∂p
= − δ(1 − δ)s(1 − s)

(δδps(1 − s) + (1 − δ))2 > 0 (37)

∂ δps(1−s)
δps(1−s)+(1−δ)

∂s
= − 8(x3 + x)

(δδps(1 − s) + (1 − δ))2





> 0 if s < 0.5
= 0 if s = 0.5
< 0 if s > 0.5

(38)

Therefore, the maximum ε with which conditional altruists have a higher
expected fitness than free riders increases in δ and p and increases in s until
it reaches its maximum at s = 0.5 after which is decreases in s. Furthermore,
this means that it increases strictly in the probability that a transfer actually
occurs 2s(1 − s) since

∂2s(1 − s)

∂s
= 2 − 4s





> 0 if s < 0.5
= 0 if s = 0.5
< 0 if s > 0.5

(39)

The derivative of the conditional altruists expected fitness given in (33)
with respect to ε is given by

∂EFca

∂ε
=

s(1 − s)
√

R

2(1 + ε)3/2




p
(√

1
ε
− 1

)

(1 − δ)
− 1 − p

1 − δ(1 − s + s2)


 (40)
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which becomes zero if

p
(√

1
ε
− 1

)

(1 − δ)
− 1 − p

1 − δ(1 − s + s2)
= 0

⇔p(1 − √
ε)(1 − δ(1 − s + s2)) − √

ε(1 − p)(1 − δ) = 0

⇔√
ε
(
p(1 − δ(1 − s + s2)) + (1 − p)(1 − δ)

)
= p(1 − δ(1 − s + s2))

⇔ε∗ =

(
p(1 − δ(1 − s + s2))

p(1 − δ(1 − s + s2)) + (1 − p)(1 − δ)

)2

(41)

The second derivative of (33) with respect to ε is given by

∂2EFca

∂ε2
=

√
s(1 − s)R

4(1 + ε)5/2
×


− p(1 + ε)

(1 − δ)ε3/2
− 3




p
(√

1
ε
− 1

)

(1 − δ)
− 1 − p

1 − δ(1 − s + s2)





 .

(42)

This expression becomes negative if the term in square brackets is negative.
Since the term in normal brackets is 0 for ε∗, the whole expression is negative.
Therefore, the fitness reaches its maximum at ε∗.

The first derivatives of ε∗ with respect to δ, p and s are

∂ε∗

∂δ
=

2p2(1 − p)s(1 − s)(1 − δ(1 − s + s2))

(1 − δ(1 − ps(1 − s)))3 > 0 (43)

∂ε∗

∂p
=

2p(1 − δ)(1 − δ(1 − s + s2))2

(1 − δ(1 − ps(1 − s)))3 > 0 (44)

∂ε∗

∂s
=

2δp2(1 − p)(2s − 1)[(1 − δ)2 + δ(1 − δ)s(1 − s)]

(1 − δ(1 − ps(1 − s)))3





> 0 if s < 0.5
= 0 if s = 0.5
< 0 if s > 0.5

(45)
Therefore, the optimal ε∗ increases in δ and p, increases in s until it reaches
its maximum at s = 0.5 after which is decreases in s, and increases in the
probability for transfers 2s(1 − s).

A.5 Proof V

Assume that in at least one previous round, player j has made a positive
transfer and revealed εj,i. The current round is the first round in which i
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was successful, but j was not. If i makes a transfer that reveals εi,j < εj,i,
j will cease all future transfers. Therefore, the only feasible options are
εi,j = 0 (free riding) and εi,j = εj,i (replication), all other εi,j necessarily lead
to outcomes inferior to at least one of those two. If i reveals εi,j = 0, his
expected fitness is given by

EFfr =
√

R + δs

√
R

1 − δ
. (46)

If i reveals εi,j = εj,i instead, i’s expected fitness is given by

EFc =

√
R

1 + εj,i

+ δs2

√
R

1 − δ
+ δs(1 − s)

√
R

1+εj,i
+

√
εj,iR

1+εj,i

1 − δ
. (47)

Replicating j’s transfer is superior to free riding if

EFfr ≤ EFc

⇔
√

R + δs

√
R

1 − δ
≤

√
R

1 + εj,i

+ δs2

√
R

1 − δ
+ δs(1 − s)

√
R

1+εj,i
+

√
εj,iR

1+εj,i

1 − δ

⇔1 +
δs(1 − s)

1 − δ
≤

√
1

1 + εj,i

+ δs(1 − s)

√
1

1+εj,i
+

√
εj,i

1+εj,i

1 − δ

⇔
√

1 + εj,i

(
1 +

δs(1 − s)

1 − δ

)
≤

(
1 +

δs(1 − s)

1 − δ

)
+ δs(1 − s)

√
εj,i

1 − δ

⇔
√

1 + εj,i ≤ 1 +
√

εj,i
δs(1 − s)

1 − δ(1 − s + s2)

⇔1 + εj,i ≤ 1 + 2
√

εj,i
δs(1 − s)

1 − δ(1 − s + s2)
+ εj,i

(
δs(1 − s)

1 − δ(1 − s + s2)

)2

⇔√
εj,i

(
1 −

(
δs(1 − s)

1 − δ(1 − s + s2)

)2
)

≤ 2
δs(1 − s)

1 − δ(1 − s + s2)

⇔εj,i ≤ 4

(
δs(1 − s)[1 − δ(1 − s + s2)]

[1 − δ(1 − s + s2)]2 − [δs(1 − s)]2

)2

(48)
Denoting δs(1 − s) as a and 1 − δ(1 − s + s2) as b, (48) becomes

εj,i ≤ 4

(
ab

b2 − a2

)2

(49)
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The first derivatives of (48) with respect to δ and s are given by

∂(48)

∂p
= 8δs2(1 − s)2×

(1 − δ)3 + δs(1 − s)[3(1 − δ)2 + 2δs(2(1 − δ)(1 − s) + δs(1 − s)2)]

((1 − δ)2 + 2δ(1 − δ)s(1 − s))3 > 0

(50)
∂(48)

∂s
= 8δ2s(1 − s)(1 − 2s)×

(1 − δ)3 + δs(1 − s)[3(1 − δ)2 + 2δs(2(1 − δ)(1 − s) + δs(1 − s)2)]

(1 − δ)2[(1 − δ) + 2δs(1 − s)]3

> 0 if s < 0.5, = 0 if s = 0.5, < 0 if s > 0.5

(51)

Therefore, the maximum εj,i that player i should replicate increases in δ,
increases in s until it reaches its maximum at s = 0.5 after which is decreases
in s, and increases in the probability for transfers 2s(1 − s).

A.6 Proof VI

Assume that in at least one previous round, player j has made a positive
transfer and revealed revεj,i. The current round is the first round in which i
was successful, but j was not. If i makes a transfer that reveals εi,j ≤rev εj,i, j
will replicate this transfer in all future rounds. Any larger transfer revealing
εi,j >rev εj,i will not change j’s revεj,i Now, in the current round, i keeps

R
1+εi,j

. In all future rounds, when both player are successful (probability s2),

i will receive R, when only i is successful (probability s(1 − s)), he will keep
R

1+εi,j
and when only j is successful (probability s(1 − s)), j will copy i’s

transfer and choose εj,i = εi, j, so that i will receive
εi,jR

1+εi,j
. Therefore, i’s

expected fitness is given by

EFi =

√
R

1 + εi,j

+ δs2

√
R

1 − δ
+ δs(1 − s)

√
R

1+εi,j
+

√
εi,jR

1+εi,j

1 − δ
. (52)

The first derivative with respect to εi,j is

∂EFi

∂εi,j

= −
√

εi,jR − δ(1 − s + s2)
√

εi,jR + s(1 − s)
√

R

2(1 − δ)
√

εi,j(1 + εi,j)3/2
, (53)
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which becomes 0 if
√

εi,jR − δ(1 − s + s2)
√

εi,jR − δs(1 − s)
√

R = 0

⇔√
εi,j(1 − δ(1 − s + s2) == δs(1 − s)

⇔ε∗
i,j =

(
δs(1 − s)

1 − δ(1 − s + s2)

)2

=

(
1 − 1 − δ

1 − δ(1 − s + s2)

)2
(54)

The second derivative is

∂2EFi

∂ε2
i,j

=

√
R

(
3ε

3/2
i,j (1 − δ(1 − s + s2)) − 4εi,j(δs(1 − s)) − δs(1 − s)

)

4(1 − δ)ε
3/2
i,j (1 + εi,j)5/2

.

(55)
The denominator is always positive and inserting ε∗

i,j into the enumerator
yields

−
(δs(1−s))3

1−δ(1−s+s2)
+ δs(1 − s)

δs(1 − s)
, (56)

which is always negative. Therefore, i optimally chooses εi,j = min[ε∗
i,j, εj,i].

If player j would replicate not only lower transfers, but higher transfers as
well, player i would always choose ε∗

i,j.
The first derivatives of ε∗

i,j with respect to δ and s are

∂ε∗
i,j

∂δ
=

2δs2(1 − s)2

(1 − δ(1 − s + s2))3
> 0 (57)

∂ε∗
i,j

∂s
=

2δ2(1 − δ)s(1 − s)(1 − 2s)

(1 − δ(1 − s + s2))3





> 0 if s < 0.5
= 0 if s = 0.5
< 0 if s > 0.5

(58)

Therefore, the optimal ε2
i,j increases in δ, increases in s until it reaches its

maximum at s = 0.5 after which is decreases in s, and increases in the
probability for transfers 2s(1 − s).

A.7 Proof VII

A first mover i in a population consisting entirely of replicators faces the
same problem that the second type of conditional altruist faced as the first
mover’s expected fitness is also given by equation (52). Therefore, first mover

i always reveals ε∗
i,j =

(
δs(1−s)

1−δ(1−s+s2)

)2

=
(
1 − 1−δ

1−δ(1−s+s2)

)2

.
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A.7.1 Proof VIII

A second mover j of the second type always replicates ε∗
i,j because it is the

optimal reaction. A second mover j of the first type replicates ε∗
i,j if

(
δs(1 − s)

1 − δ(1 − s + s2)

)2

≤ 4

(
δs(1 − s)[1 − δ(1 − s + s2)]

[1 − δ(1 − s + s2)]2 − [δs(1 − s)]2

)2

⇔ δs(1 − s)

1 − δ(1 − s + s2)
≤ 2

δs(1 − s)[1 − δ(1 − s + s2)]

[1 − δ(1 − s + s2)]2 − [δs(1 − s)]2

⇔1

2
≤ [1 − δ(1 − s + s2)]2

[1 − δ(1 − s + s2)]2 − [δs(1 − s)]2

(59)

Denoting δs(1 − s) as a and 1 − δ(1 − s + s2) as b, this expression becomes

1

2
<

b2

b2 − a2
(60)

which is always true. Therefore, a second mover of the first type will also
always replicate ε∗

i,j.

A.8 Proof IX

If εi,j = εj,i = 1, each player’s expected fitness each round is given by

EFε=1 = s2
√

R + s(1 − s)

(√
R

2
+

√
R

2

)
. (61)

If εi,j = εj,i = ε∗, each player’s expected fitness each round is given by

EFε∗ = s2
√

R + s(1 − s)

(√
R

1 + ε∗ +

√
ε∗R

1 + ε∗

)
. (62)

The expected fitness of both players making transfers revealing ε = 1 is larger
than both player making transfers revealing ε = ε∗ if

EFε=1 > EFε∗

⇔s2
√

R + s(1 − s)

(√
R

2
+

√
R

2

)
> s2

√
R + s(1 − s)

(√
R

1 + ε∗ +

√
ε∗R

1 + ε∗

)

⇔
√

1

2
+

√
1

2
>

√
1

1 + ε∗ +

√
ε∗

1 + ε∗

⇔2 >
1 + sqrtε∗ + ε∗

1 + ε∗

⇔1 + ε∗ > sqrtε∗

(63)
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which is always true.

A.9 Proof X

Assume player i and j have agreed to always transfer 0.5R (i.e. εi,j = εj,i = 1)
when applicable. Now player i finds himself in the role of the first mover.
Player i knows that player j will reduce her εj,i to 0 if i makes a transfer
lower than 0.5R. If i transfers 0.5R, j will also transfer 0.5R each round
when applicable. The only two valid options for i are therefore honoring the
agreement or not making any transfer at all. Honoring the agreement yields
an expected fitness given by

EFεi,j=1 =
√

0.5R + δs2

√
R

1 − δ
+ 2δs(1 − s)

√
0.5R

1 − δ
(64)

Not honoring the agreement yields an expected fitness given by

EFεi,j<1 =
√

R + δs

√
R

1 − δ
(65)

Honoring the agreement is preferable if

EFεi,j=1 ≥ EFεi,j<1

⇔
√

0.5R + δs2

√
R

1 − δ
+ 2δs(1 − s)

√
0.5R

1 − δ
≥

√
R + δs

√
R

1 − δ

⇔
√

0.5 +
δs2

1 − δ
+

√
2δs(1 − s)

1 − δ
≥ 1 +

δs

1 − δ

⇔(1 − δ)(
√

0.5 − 1) + δ
(
s2 +

√
2s(1 − s) − s

)
≥ 0

⇔δ(1 −
√

0.5 + s(1 − s)(
√

2 − 1)) ≥ 1 −
√

0.5

⇔δ ≥ 1 −
√

0.5

1 −
√

0.5 + s(1 − s)(
√

2 − 1)

(66)

If player i values future payoffs strongly enough, he will honor the agreement
and transfer half of the resource. The first derivative with respect to s is
given by

∂(66)

∂s
=

(2s − 1)(1 −
√

0.5)(
√

2 − 1)
(
1 −

√
0.5 + s(1 − s)(

√
2 − 1)

)2





> 0 if s < 0.5
= 0 if s = 0.5
< 0 if s > 0.5

(67)

Therefore, the δ necessary to honor the agreement increases in s until it
reaches its maximum at s = 0.5 after which is decreases in s, and increases
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in the probability for transfers 2s(1−s). If player i and player j have different

factors with δi > 1−
√

0.5
1−

√
0.5+s(1−s)(

√
2−1)

> δj, player i will honor the agreement

while player j will not (she may, however, still agree to the arrangement and
defect later).

A.10 Proof XI

Player i has a higher probability for success than player j, i.e. si > sj. If
player i does not interact with player j, he receives

√
R with probability si

each round. Sharing resources equally with player j each round yields an
expected fitness of

EFes = sisj

√
R + si(1 − sj)

√
R

2
+ sj(1 − si)

√
R

2
. (68)

Player i is better off not interacting with player j if

si

√
R > sisj

√
R + si(1 − sj)

√
R

2
+ sj(1 − si)

√
R

2

⇔si > sisj +
si√
2

− sisj√
2

+
sj√
2

− sisj√
2

⇔si(
√

2 − 1 + sj(2 −
√

2)) > sj

⇔si >
sj√

2 − 1 + sj(2 −
√

2)

(69)

For each sj that satisfies 0 ≤ sj < 1, the right hand side is always smaller
than 1.

1 >
sj√

2 − 1 + sj(2 −
√

2)

⇔
√

2 − 1 + sj(2 −
√

2) > sj

⇔sj(1 −
√

2) > 1 −
√

2

⇔sj < 1

(70)

Therefore, for each sj that satisfies 0 ≤ sj < 1, there exists a success proba-
bility si for which player i’s fitness is higher when not interacting with player
j than when agreeing to always transfer the equal split.
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