
Vol 3 | No 14

Forecasting extreme electricity spot prices

Volodymyr Korniichuk (Cologne Graduate School, University of Cologne)



Forecasting extreme electricity spot prices

Volodymyr Korniichuka

aCologne Graduate School, University of Cologne

Abstract

We propose a model for forecasting extreme electricity prices in real time (high frequency) settings.
The unique feature of our model is its ability to forecast electricity price exceedances over very high
thresholds, where only a few (if any) observations are available. The model can also be applied
for simulating times of occurrence and magnitudes of the extreme prices. We employ a copula
with a changing dependence parameter for capturing serial dependence in the extreme prices and
the censored GPD for modelling their marginal distributions. For modelling times of the extreme
price occurrences we propose an approach based on a negative binomial distribution. The model is
applied to electricity spot prices from Australia’s national electricity market.

Keywords: electricity spot prices, copula, GPD, negative binomial distribution.

1. Introduction

A typical feature of electricity spot prices is their disposition towards sudden extreme jumps.
This phenomenon stems from the lack of practical ways to store electricity and is attributed to
an inelastic demand for electricity and very high marginal production costs in case of unforeseen
shortfalls in electricity supply or unexpected rises in the demand. Although lasting for rather
short time intervals, the magnitudes of those jumps may take extreme proportions hundred times
exceeding the average electricity prices. This type of price behaviour presents an important topic
for the risk management research and is of great relevance for electricity market participants,
for example, retailers, who buy electricity at market prices but redistribute it at fixed prices to
consumers. Estimating the probabilities of electricity prices to exceed some high thresholds is of
paramount importance for the retailers, because even a few hours of extreme prices on the market
may cause significant losses in their portfolios.

The problem of modelling extreme electricity prices was considered in many papers, e.g., Eichler,
Grothe, Manner, and Tuerk (2012), Christensen, Hurn, and Lindsay (2012), which concentrate
on modelling times of extreme price occurrences in Australia’s national electricity market, and
Klüppelberg, Meyer-Brandis, and Schmidt (2010) for the electricity spot price model applied to
daily data of the EEX Phelix Base electricity price index. Considering the recent developments in
modelling extreme electricity prices, there is still a lack of an approach for a combined modelling
of times of occurrence and magnitudes of extreme electricity prices in real time (high frequency)
settings. To fill that gap, we develop in this paper a model for a complete description of extreme
electricity spot prices. The model consists of two components (sub-models): one for modelling the
magnitudes of extreme electricity prices and the other for modelling times of extreme electricity price
occurrences. Once being estimated, our model can be applied (without re-estimation) for forecasting
the price exceedances over any sufficiently high threshold. This unique feature is provided by a
special construction of the model in which price exceedances over a comparatively small threshold
may trigger the exceedances over much larger levels.

Common distributions used in the literature for modelling electricity prices are Gaussian, ex-
ponential, and generalized beta (Geman and Roncoroni (2010), Becker, Hurn, and Pavlov (2007)).
Since those distributions cannot account for heavy tails of the magnitudes of extreme electricity
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Figure 1: Electricity prices in NSW region of Australia’s electricity market over the period Jan 1, 2002–Dec 31, 2011.

spot prices, we suggest, first, to use a generalized Pareto distribution (GPD) for capturing the heavy
tails and, second, to employ a copula (survival Clayton) with a changing dependence parameter for
capturing the serial dependence between the magnitudes. We account also for possible ceilings in
the electricity prices by applying the censored GPD approach.

For modelling times of extreme electricity price occurrences, we propose a duration model based
on a negative binomial distribution with a time-varying parameter. That model can capture the
main features of time intervals between the extreme price occurrences, namely, the high variability,
the strong persistence, and the discreteness. We compare the performance of the proposed model
to the performance of other suitable approaches, like the autoregressive conditional duration model
(Engle and Russell, 1998) and the Hawkes process (Hawkes, 1971).

The model of this paper is developed on and applied to the dataset of half-hourly electricity spot
prices from the four regions of Australia’s electricity market: New South Wales (NSW), Queensland
(QLD), South Australia (SA), and Victoria (VIC). The dataset consists of 175296 observations,
embracing the period over January 1, 2002–December 31, 2011.

The rest of the paper is organized as follows. In Section 2 we define a price spike, a building
block of this paper, and provide then a short data-analysis of the prices. In Sections 3 and 4 we
present our models for, respectively, magnitudes and times of the spikes. Section 5 combines those
models into one model for forecasting extreme electricity prices. Section 6 concludes.

2. Defining a price spike

In intra-day electricity spot prices, one frequently observes a feature which is common for most
electricity markets, namely sudden extreme prices. In Australia’s electricity market, for example,
the magnitude of some prices 300 times exceeds the sample average, see Figure 1 for electricity
prices from NSW region and Table 1 for descriptive statistics of the half-hourly prices from the four
regions of Australia’s electricity market embracing the period over January 1, 2002–December 31,
2011. Modelling and forecasting those extreme electricity prices is the aim of this paper.

A building block of our model is a (price) spike, under which we understand a situation when
the electricity price exceeds a certain high threshold. We use the spikes to develop two separate
models: one (in Section 3) for the magnitudes of the spikes and the other (in Section 4) for the
times of spike occurrences. In Section 5, we combine those two models into one for a complete
description of extreme electricity prices. The final model can provide probabilities of the prices to
exceed not only the threshold of the spikes, but any other sufficiently high level. All those models
are developed on the dataset from Australia’s electricity market.

Treating a spike as a situation when the price exceeds a certain high threshold, there are different
approaches in the literature how to set that threshold. In Christensen, Hurn, and Lindsay (2009),
Eichler, Grothe, Manner, and Tuerk (2012), the choice of the threshold is argued either by needs
of the market, e.g., 300AUD/MWh is the strike price of heavily-traded cap products in Australia’s
electricity market, or simply by convenience, e.g, setting the threshold at the 95% quantile of the
prices. In both those cases the threshold is fixed and hence does not incorporate the electricity
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Table 1: Descriptive statistics for half-hourly electricity spot prices (AUD/MWh) from the four regions of Australia’s
electricity market in the period over January 1, 2002–December 31, 2011.

NSW QLD SA VIC
mean 39.8 36.1 43.8 35.1

median 25.1 22.7 28.1 25.2
st. dev. 224.3 189.8 283.7 158.3

skewness 31.6 31.9 31.4 44.7
kurtosis 1138.5 1191.3 1065.1 2349.7

number of observations 175296 175296 175296 175296
Notes: subscripts on the column headings indicate four regions of
Australia’s electricity market: New South Wales (NSW), Queens-
land (QLD), South Australia (SA), and Victoria (VIC).
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Figure 2: Mean and standard deviation of the electricity prices pooled by 30-min period of the day.

prices’ diurnal structure, which is explicitly manifested in the prices’ changing mean and variation
during the day, see Figure 2.

This diurnal structure has a strong impact on the retailers’ expectations of the prices. For
instance, a retailer operating on Australia’s electricity market at 6am may expect an average price
for electricity of approximately 20AUD/MWh, but at 12am the retailer’s expectation are completely
different: the average price is doubled and the standard deviation is at least tripled. Due to these
varying expectations, the price level of 155AUD/MWh at 12am can be regarded as extreme because
it exceeds the 99% quantile of the expected prices at 12am, but at 6am the price should exceed
the level of only 50AUD/MWh in order to be considered as extreme in the same sense. Those
comparatively small extreme prices carry information about the state of the market (indicating, for
example, a rise in the demand for electricity or a shortfall in the supply) and they should therefore
be accounted for in forecasting electricity prices to exceed some higher (e.g. > 300AUD/MWh)
thresholds.

Considering the diurnal distribution of the prices as a representation of the retailers’ price
expectations, we suggest to define a spike as a situation when the price exceeds a certain high
quantile of those expectations. For this reason we set the diurnal threshold – the threshold which
consists of 48 values corresponding to the 97% quantile of the prices happened at each of 48 half-
hour periods of the day. The choice of the 97% quantile is motivated by the intention to consider
high prices, on one hand, and to have enough data for statistical inferences, on the other hand.
The spikes defined with help of the diurnal threshold will be used in Section 5 for construction
of the model that can forecast the prices to exceed not only the diurnal threshold, but any other
sufficiently high levels.

Figure 3 and 4 plot, respectively, the diurnal threshold and monthly proportions of the spikes
provided by that diurnal threshold in the four regions of Australia’s electricity market in the period
over January 1, 2002–December 31, 2011. Note that an atypically high proportion of the spikes in
the year 2007 is unrepresentative for the whole dataset and can severely distort the modelling of
times of spike occurrences. We will address that issue in Section 4.
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Figure 3: Diurnal threshold. Notes: solid vertical
lines illustrate parts of the day where ξ of the GPD
can be assumed to be the same, details in Section 3.1.1.
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Figure 4: Monthly proportions of the spikes. Notes: the
period of atypically high proportion of spikes in 2007 will
be removed in modelling times of the spike occurrences.

3. Modelling magnitudes of the spikes

We understand a spike magnitude as the excess of the price level over the corresponding value of
the diurnal threshold at times when spikes occur. Throughout the paper, Y1, Y2, . . . , YN will denote
N consecutive (random) spike magnitudes. In Section 3.1 we develop a model for capturing the
main features of the spike magnitudes. Section 3.2 considers a censored estimation procedure to
account for the ceiling in the electricity prices. In Section 3.3 we report on the estimation results of
fitting the model to magnitudes of the spikes occurred in the four regions of Australia’s electricity
market in the period over January 1, 2002–December 31, 2011.

3.1. Description of the model

3.1.1. Modelling long tails in magnitudes of the spikes

Magnitudes of extreme electricity prices are often modelled with Gaussian, exponential, or
generalized beta distributions, see, for example, Geman and Roncoroni (2010), Becker, Hurn, and
Pavlov (2007). Since those methods may significantly underestimate a spike risk in the high-
frequency electricity spot prices (by failing to account for their heavy tails), we suggest to use a
generalized Pareto distribution (GPD) for modelling magnitudes of the spikes. The distribution
function of a GPD is defined as follows

G(x; ξ, β) =

{
1− (1 + ξx/β)−1/ξ, ξ 6= 0,

1− exp(−xβ), ξ = 0,
(1)

where β > 0, x ≥ 0 for ξ ≥ 0 and 0 ≤ x ≤ −β/ξ for ξ < 0. We shall refer to ξ and β as,
respectively, the shape and scale parameters. Note that the GPD distributed random variable X
is a heavy-tailed and it holds E

(
Xk
)

=∞ for k ≥ 1/ξ.
The GPD possesses several properties which may be very beneficial in modelling magnitudes of

the spikes. First, it was shown in Pickands (1975) that for distributions belonging to the domain
of attraction of an extreme value distribution, i.e., for heavy-tailed data, the GPD is a limiting
distribution for excesses over a suitably high threshold. Since the electricity prices are heavy-
tailed, the GPD is a natural choice to model the magnitudes of the spikes. Second, the GPD is
characterized by threshold stability property stating that if excesses over some threshold u1 can be
modelled by the GPD with the shape parameter ξ and the scale parameter βu1

, then excesses over
the higher threshold u2 can be modelled by the GPD with the same shape parameter ξ and the
scale parameter βu2

defined as βu2
= βu1

+ ξ(u2 − u1). Using the GPD for the spike magnitudes
may provide better estimates of the tail of the spikes and protect against arbitrariness involved in
the choice of the diurnal threshold. See Davison and Smith (1990) for a detailed record on using
a GPD to model exceedances over high thresholds. Modelling extreme electricity prices with a
GPD can also be found in Klüppelberg, Meyer-Brandis, and Schmidt (2010). Note that the use
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Figure 5: Spearman’s rank correlation between the
lagged spike magnitudes.
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Figure 6: Histogram of the electricity prices exceeding
400AUD/MWh.

of Paretian distributions (a GPD’s special case) to model commodity prices was first suggested in
Mandelbrot (1963).

Applying the GPD for description of the spike magnitudes is not straightforward, because the
diurnal structure of the prices implies that the spikes across the day have different characteristics
and hence they cannot be modelled by the same GPD. We suggest to model the spike magnitudes
belonging to each of 48 half-hour periods of the day by a separate GPD. In order to reduce the
number of the shape parameters to be estimated, which, in turn, simplifies our model and leads to
more accurate estimates, we distinguish parts of the day when the shape parameters of the prices
can be assumed to be the same (but not the scale parameters). The possible division of the day
can be as follows: 12am–2am; 2.30am–7.30am; 8am–13.30pm; 14pm–7pm; 7.30pm–11.30pm. Solid
vertical lines on Figure 3 illustrate that division. Further in the text, we will denote by m(i) a
function that identifies to which part of the day (where the shape parameters are assumed equal)
the i-th observation belongs, and by n(i) a function that identifies to which out of 48 half-hour
periods of the day the i-th observation belongs. The corresponding parameters of the GPD will be
denoted by ξm(i) and βn(i).

3.1.2. Modelling dependence in magnitudes of the spikes

In addition to the distributional choice for spike magnitudes Y1, Y2, . . . , YN , there is a need of
modelling a dependence between them. Figure 5 plots the estimated autocorrelation of the spike
magnitudes calculated as Spearman’s rank correlation between k-lagged samples Y1, Y2, . . . , YN−k
and Yk+1, Yk+2, . . . , YN . Although those correlations cannot be directly interpreted, because time
intervals between the spike occurrences ranges from 30 minutes to 5 months, they still clearly
indicate a strong positive dependence between the spike magnitudes. In addition to the strong
dependence, extreme electricity prices display a peculiar clustering behaviour around the level of
10000AUD/MWh, see Figure 6, which is attributed to price ceiling on the market. We will address
modelling this price ceiling in Section 3.2.

A conventional way of handling dependences between non-identically distributed random vari-
ables is a copula. In continuous case, a copula is a multivariate distribution function with uni-
formly on [0, 1] distributed marginal distributions. A detailed introduction to copulas can be found
in Nelsen (2006), for an excellent review of copula based models for econometric time series see
Patton (2012). To capture dependence between two consecutive spikes Yi−1 and Yi we suggest
to model the conditional distribution of Yi given Yi−1 = yi−1 as a conditional distribution of two
random variables with copula C(u1, u2), namely,

P
(
Yi ≤ y | Hti−1 , ti

)
=

∂
∂u2

C
(
FYi

(y), FYi−1
(yi−1)

)

fYi−1
(yi−1)

, (2)

where Hti−1
is a history of the first (i − 1) spikes including their magnitudes (y1, . . . , yi−1) and

times of occurrences (t1, . . . , ti−1); ∂
∂u2

C denotes a derivative of copula C(u1, u2) by the second
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component; FYi is an unconditional distribution function of Yi (which is assumed to be the GPD),
and fYi is the corresponding density. Note that FYi (Yi) follows the uniform on [0, 1] distribution.

Considering the specification for C(u1, u2), we prefer a dependence structure which is both
simple, to provide explicit simulation formulas, and flexible, to capture a changing dependence
between the spike magnitudes. We suggest to use the survival Clayton copula, which is defined as
follows

C(u1, u2) = u1 + u2 +
(
(1− u1)−θ + (1− u2)−θ − 1

)−1/θ − 1, 0 < θ <∞. (3)

In the limit this copula approaches the independence copula as θ → 0 and the two-dimensional
comonotonicity copula as θ → ∞. Beneficially to modelling clustering of large spikes, copula (3)
implies asymptotically dependent tails with a coefficient of upper tail dependence λu = 2−1/θ.
Furthermore, the survival Clayton copula is the upper threshold limit of the Galambos copula
providing in practice an accurate approximation for Gumbel and t extreme value copulas, see
McNeil, Frey, and Embrechts (2005).

Applying copula for modelling dependence between two consecutive spikes Yi−1 and Yi, it is
reasonable to assume that the more time has elapsed between the spikes the less dependent they
are. To capture that idea, we suggest to model the dependence parameter θ of copula (3) as
θi = γ0 D−γ1i , γ0 > 0, γ1 ≥ 0, where Di denotes a time interval between occurrence of two
consecutive spikes Yi−1 and Yi, i.e, Di = ti − ti−1. This specification of θi implies a constant (not
time-varying) level of dependence between the spikes that are separated by the same time interval.

With copula (3) and the GPD as an unconditional distribution of the spike magnitudes, the
conditional distribution of Yi in (2) takes the form

P
(
Yi ≤ y | Hti−1

, ti
)

= 1−
(

1 +
gi(y)θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1/θi+1)

, (4)

with P (Y1 ≤ y | H0, t1) = 1 − g1(y)−1/ξm(1) , where again m(i) and n(i) denotes a function that
identifies, respectively, to which part of the day where the shape parameters are assumed equal and
to which out of 48 half-hour periods of the day the i-th observation belongs; ξm(i) and βn(i) denote
parameters of the GPD used for modelling magnitudes of the i-th spike; gi(y) = 1+ξm(i)

y
βn(i)

. Note

that when the time interval between occurrence of consecutive spikes is large, θi approaches zero
vanishing any dependence between spikes Yi−1 and Yi yielding the conditional distribution function
of Yi as

P
(
Yi ≤ y | Hti−1

, ti
)

= 1− gi(y)−1/ξm(i) ,

which is the distribution function of the GPD.

3.1.3. Estimation

For fully parametric copula-based models the most efficient estimation method is maximum
likelihood. Assuming that the conditional distributions of the spikes are independent, the likelihood
of N realization y1, y2, . . . , yN of spike magnitudes from model (4) takes the form

L =

N∏

i=1

∂P
(
Yi ≤ y | Hti−1

, ti
)

∂y

∣∣∣∣∣
y=yi

, (5)

where

∂P
(
Yi ≤ y | Hti−1

, ti
)

∂y

∣∣∣∣∣
y=yi

=
(θi + 1)

βn(i)

(
1 +

gi(yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(2+1/θi)
gi(yi)

θi/ξm(i)−1

gi−1(yi−1)θi/ξm(i−1)
,

(6)

with ∂P(Y1≤y|H0,t1)
∂y

∣∣∣
y=y1

= 1
βn(1)

g1(y1)−1/ξm(1)−1.

Computing standard errors of the estimated parameters we will consider standard errors based
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on an inverse Hessian of the likelihood function and simulation-based standard errors, which are
computed on parameter estimates of the model fitted on many simulated samples from the originally
estimated model. Provided the correct model specification, the latter approach yields correct finite-
sample standard errors when a number of simulation is sufficient, see Patton (2012).

3.1.4. Simulation and Goodness-of-fit

Applying the above model in practice, where true distributions are unknown, it is vital to con-
duct a goodness-of-fit test and a simulation study to check the fit of the estimated model. Our
approach to the goodness-of-fit test is based on the probability integral transformation (Diebold,
Gunther, and Tay, 1998) of the sample of spike magnitudes y1, y2, . . . , yN with the estimated con-
ditional density forecast (4). Recalling that for a continuous random variable X with distribution
function F , F (X) is uniformly distributed on the unit interval, we obtain from (4) that residuals
defined as

ui = 1−
(

1 +
gi(yi)

θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1/θi+1)

, i = 2, . . . , N, (7)

with u1 = 1 − g1(y1)−1/ξm(1) , are supposed to be N independent realizations from the uniform on
[0, 1] distribution, if the estimated model is correct (suitable). Since the goodness-of-fit looks for
evidence that the model is misspecified, the test of the estimated model can be limited to checking a
hypothesis that the residuals are independent realizations from the standard uniform distribution.

From (7), it is also immediate to construct the simulation procedure. It follows that

(
1 +

gi(Yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1/θi+1)

∼ Unif[0,1], i = 2, . . . , N, (8)

with g1(Y1)−1/ξm(1) ∼ Unif[0,1], where Y1, Y2, . . . , YN denote N consecutive (random) spike mag-
nitudes. Provided the knowledge of time intervals between the spikes (to calculate θi), one can
obtain a simulated spike magnitude by expressing Yi from the above equation for each realization
of Unif[0,1]. By adding to the simulated magnitude the corresponding value of the diurnal threshold
one obtains a simulated (extreme) electricity price.

3.2. Accounting for the price ceiling in magnitudes of the spikes

Due to legal regulations of Australia’s electricity market, the prices are capped at a maximum
of 12500AUD/MWh. This ceiling was 5000AUD/MWh until April 1, 2002 and 10000AUD/MWh
in the period from April 1, 2002 to July 1, 2010. The number of prices in the sample which have
approximately reached the ceilings, we call those prices censored, are the following: 3 in NSW, 0 in
QLD, 66 in SA, and 9 in VIC. Although there are only a few censored prices, they still may have
a strong effect on estimating tails of the spike magnitudes.

Constructing likelihood function LC which accounts for the ceiling in the electricity prices, we
distinguish four types of contribution LCi (yi) of observation Yi = yi to that likelihood function. In
case spike Yi−1 = yi−1 is censored and Yi = yi is not censored, the contribution of Yi = yi to the
likelihood is as follows

LCi (yi) =
∂P(Yi ≤ y | Hti−1

, ti, Yi−1 ≥ yi−1)

∂y

∣∣∣∣
y=yi

=

1

βn(i)

(
1 +

gi(yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1+1/θi)
gi(yi)

θi/ξm(i)−1

gi−1(yi−1)θi/ξm(i−1)
. (9)

As Yi−1 = yi−1 is not censored and Yi = yi is censored then

LCi (yi) = P(Yi ≥ yi | Hti−1 , ti, Yi−1 = yi−1) =

(
1 +

gi(yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1+1/θi)

. (10)

7



If both Yi−1 = yi−1 and Yi = yi are censored then

LCi (yi) = P(Yi ≥ yi | Hti−1
, ti, Yi−1 ≥ yi−1) =

(
1 +

gi(yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−1/θi
1

gi−1(yi−1)1/ξm(i−1)
.

(11)
In the case of Yi−1 = yi−1 and Yi = yi being not censored, the contribution of Yi = yi is as in (6).

The final likelihood function LC is a product of contributions LCi (yi) across all spikes, where
LCi (yi) takes one form of (6),(9)-(11).

3.3. Estimation results

In this section we report on the estimation results of fitting the model of Section 3.1 to the
magnitudes of the spikes occurred in the four regions of Australia’s electricity market over the
period January 1, 2002–December 31, 2011. Note that the model estimation is not adversely
affected by the atypically high proportion of spikes in the year 2007, see Figure (4), because the
conditional distribution (4) of the spike magnitudes depends only on the information of the previous
spike and time of the current spike occurrence, not on the whole history of the spikes.

Estimating the model, we define spikes that occurred by April 1, 2002 as censored if the associ-
ated prices are higher than 4995AUD. Spikes happened in the period over April 1, 2002–July 1, 2010
are set as censored if the associated prices exceed the level of 9995AUD, and the spikes occurred
after July 1, 2010 are considered to be censored if the associated prices reach 12495AUD. Note
that, since the prices tend to cluster up to the ceiling, we allow for 5AUD deviation in identifying
the censored data. The numbers of observations in the sample which were set as censored are the
following: 3 in NSW, 0 in QLD, 66 in SA, and 9 in VIC. The total number of the spikes in the
samples is as follows: 5241 in NSW, 5279 in QLD, 5271 in SA, and 5278 in VIC.

Table 2: Parameter estimates of the model for spike magnitudes. An inverse Hessian of the likelihood function is
used to obtain the standard errors reported in parentheses right to the estimates.

uncensored censored uncensored censored
NSW QLD

ξ̂1 0.4822 (0.2351) 0.4855 (0.0514) 0.5709 (0.0529) 0.5709 (0.0529)

ξ̂2 0.5125 (0.6881) 0.5161 (0.0351) 0.5298 (0.0326) 0.5298 (0.0326)

ξ̂3 1.1917 (0.2677) 1.1995 (0.0571) 1.2812 (0.0549) 1.2812 (0.0549)

ξ̂4 1.7956 (1.2866) 1.8161 (0.0877) 1.8200 (0.0765) 1.8200 (0.0765)

ξ̂5 0.8911 (0.1201) 0.8972 (0.0581) 1.2042 (0.0593) 1.2042 (0.0593)
γ̂0 2.8289 (2.0404) 2.8487 (0.1064) 2.7253 (0.0937) 2.7253 (0.0937)
γ̂1 0.3677 (0.8009) 0.3636 (0.0383) 1.4367 (0.1742) 1.4367 (0.1742)

SA VIC

ξ̂1 1.0049 (0.0498) 1.1463 (0.0764) 0.4693 (0.0340) 0.4841 (0.0731)

ξ̂2 0.7680 (0.0357) 0.8913 (0.0386) 0.8732 (0.0530) 0.9076 (0.1445)

ξ̂3 1.1501 (0.0395) 1.3036 (0.0433) 1.2580 (0.0543) 1.3031 (0.2219)

ξ̂4 1.7370 (0.0482) 2.3066 (0.0770) 1.6176 (0.0689) 1.6668 (0.3598)

ξ̂5 1.1263 (0.0404) 1.2982 (0.0420) 1.6290 (0.0875) 1.7265 (0.1936)

ξ̂6 – – 0.5561 (0.0392) 0.5735 (0.0505)
γ̂0 2.6284 (0.0511) 3.0280 (0.0605) 2.4701 (0.0562) 2.5457 (0.0552)
γ̂1 1.5777 (0.0641) 1.4117 (0.0825) 0.6722 (0.1216) 0.6400 (0.0847)
Notes: This table presents estimates of the shape (ξ) and dependence (γ0, γ1)
parameters of the model for spike magnitudes. For estimation of ξ in NSW, QLD,
and SA, five parts of the day were distinguished: 12am–2am; 2.30am–7.30am;
8am–13.30pm; 14pm–7pm; 7.30pm–11.30pm. For VIC region the following par-
tition was used: 12am–8am; 8.30am–12pm; 12.30pm–14.30pm; 15pm–5.30pm;
6pm–8pm, 8.30pm–11.30pm.

Table 2 presents parameter estimates of model (4) obtained by maximizing the ceiling adjusted
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likelihood LC (column “censored”) and the unadjusted likelihood function L in (5) (column “un-
censored”). For estimation of the model we distinguish five parts of the day: 12am–2am; 2.30am–
7.30am; 8am–13.30pm; 14pm–7pm; 7.30pm–11.30pm, – and model magnitudes of the spikes within
the part with the GPD which has the same shape parameter ξ but different scale parameters β
corresponding to every half-hour period of the day. Note that improving fit of the model for spike
magnitudes in VIC region, we use another partition of the day where the shape parameters are
assumed equal. The partition is as follows: 12am–8am; 8.30am–12pm; 12.30pm–14.30pm; 15pm–
5.30pm; 6pm–8pm, 8.30pm–11.30pm. In the table, we report only the estimates of the shape
parameter (ξ) of the GPD and of the dependence parameters (γ0, γ1). To save space, estimates of
the scale parameter are not displayed in the table, but they are available upon request.

Accounting for the price censoring has insignificant effects on the estimates of the shape pa-
rameter for NSW spikes, which have a few censored observations, but on the estimates for VIC
and SA spikes that effect is strong leading to a significant upward adjustment of the uncensored
estimates. Without that upward adjustment of the shape parameter estimates, the risk of extreme
prices would be underestimated.

Provided by the asymptotic distributional properties of the maximum likelihood estimators, see,
e.g., Greene (2003), calculation of standard errors for the parameter estimates in Table 2 is based on
the inverse Hessian of the likelihood function. Since the use of asymptotic arguments in finite-size
samples may yield inaccurate results, we conduct a further analysis of the estimators based on the
ceiling adjusted maximum likelihood LC . We simulated 500 paths of (censored) spike magnitudes
with the parameter values of Table 2 (column “censored”) and estimated the ceiling adjusted
model on every simulated path. The mean, the standard deviation, the mean relative bias, and
the mean squared error of the estimated parameters are summarized in Table 3. Non-surprisingly,
the estimators show a large variation and tend to be upward biased. This large variation of the
estimates is a typical feature of all extreme value statistics, especially of those based on threshold
data, see Klüppelberg, Meyer-Brandis, and Schmidt (2010).

Table 3: Estimated mean, standard deviation (std), mean relative bias (MRB), and mean squared error (MSE) of
estimated parameters for the ceiling adjusted model from 500 simulated paths.

true value mean std MRB MSE true value mean std MRB MSE
NSW QLD

ξ̂1 0.4855 0.64 0.09 0.31 0.03 0.5709 0.67 0.09 0.17 0.02

ξ̂2 0.5161 0.68 0.08 0.32 0.03 0.5298 0.62 0.07 0.17 0.01

ξ̂3 1.1995 1.58 0.19 0.32 0.18 1.2812 1.51 0.15 0.18 0.08

ξ̂4 1.8161 2.48 0.28 0.37 0.53 1.8200 2.25 0.23 0.24 0.24

ξ̂5 0.8972 1.18 0.14 0.32 0.10 1.2042 1.41 0.14 0.17 0.06
γ̂0 2.8487 3.79 0.42 0.33 1.06 2.7253 3.23 0.27 0.19 0.33
γ̂1 0.3636 0.34 0.03 -0.07 0.00 1.4367 1.36 0.15 -0.05 0.03

SA VIC

ξ̂1 1.1463 1.36 0.13 0.19 0.06 0.4841 0.55 0.07 0.13 0.01

ξ̂2 0.8913 1.05 0.10 0.18 0.04 0.9076 1.03 0.12 0.13 0.03

ξ̂3 1.3036 1.56 0.14 0.19 0.08 1.3031 1.50 0.18 0.15 0.07

ξ̂4 2.3066 2.92 0.26 0.27 0.44 1.6668 1.95 0.22 0.17 0.13

ξ̂5 1.2982 1.55 0.15 0.20 0.09 1.7265 1.99 0.21 0.16 0.12

ξ̂6 – – – – – 0.5735 0.64 0.08 0.12 0.01
γ̂0 3.0280 3.64 0.28 0.20 0.46 2.5457 2.90 0.27 0.14 0.20
γ̂1 1.4117 1.35 0.13 -0.04 0.02 0.6400 0.62 0.05 -0.04 0.00
Notes: This table presents characteristics for estimates of the shape (ξ) and dependence (γ0, γ1)
parameters of the ceiling adjusted model for the spike magnitudes estimated on 500 simulations
from that model with parameter values of Table 2 column “censored”.

As a goodness-of-fit test of the estimated ceiling adjusted model, Figure 7 plots the autocor-
relation of the residuals (û1, . . . , ûN ) computed according to (7). The estimated autocorrelations
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Figure 7: Autocorrelation of the residuals. Solid
vertical lines show 99% confidence intervals.

Figure 8: QQ-plot of the transformed residuals. Green
points show expected deviations of the residuals.

lie mainly within the confidence bounds indicating no evidence against an assumption of zero au-
tocorrelations. This suggestion is supported by the Ljung-Box test (15 lags) which failed to reject
the null of no autocorrelation with p-values 61.82% for NSW, 91.44% for QLD, 16.58% for SA,
and 7.39% for VIC. The hypothesis of no autocorrelation was also supported by investigating the
squares of the residuals (p-values: 59.48% for NSW, 84.97% for QLD, 12.89% for SA, 28.06% for
VIC). The absence of significant autocorrelation in the estimated residual indicates the ability of
our model to capture the serial dependence between the spike magnitudes.

Considering the distributional properties of (û1, . . . , ûN ), Figure 8 illustrates the plot of the
quantiles of transformed residuals (− log (û1) , . . . ,− log (ûN )) versus the corresponding quantiles
of the standard exponential distribution. We have also added to the figure the QQ-plots of 100
realizations of the standard exponential random variable (in green color), to illustrate what type of
deviations one can expect. In case of a good fit of the estimated model, the transformed residuals
are supposed to be standard exponentially distributed, implying the uniform on [0, 1] distribution of
the estimated residuals. After an inspection of the plot, it becomes apparent that the transformed
residuals seem indeed be consistent with the standard exponential distribution, although compara-
tively few of them deviate from the expected boundaries. Those few deviations may be attributed,
among others, to an inevitable estimation error of the model (55 estimated parameters), the price
ceiling, and a peculiar clustering behaviour of the prices (especially in QLD) around the level of
1700AUD/MWh, see Figure 6.

For a further analysis of the estimated ceiling adjusted model, we investigate its properties in a
small simulation study. Using the original time intervals between the spike occurrences to compute
θi, we simulated 500 samples of the spike magnitudes (of the same length as the original ones)
and added to them the corresponding values of the diurnal threshold. The obtained values can
be considered as simulated extreme electricity prices in the absence of any ceilings. To compare
those prices with the original (censored) ones, we truncated the simulated values at the level equal
to the price ceilings of the corresponding original spikes, i.e, at the level of 12500AUD/MWh,
10000AUD/MWh, or 5000AUD/MWh depending on the time of the original spike occurrences.
The results, documented in Table 4, clearly indicate that the simulated prices acceptably reproduce
(in range of one standard deviation) the first two moments of the original extreme prices and
autocorrelation of the original spike magnitudes.

In light of the estimation results presented in this section, it seems that our model provides
a reasonable description of the spike magnitudes by capturing their heavy-tails, strong positive
dependence, and intra-day variability.

4. Modelling durations between spike occurrences

In this section, we concentrate on modelling times of the spike occurrences. Inspecting Figure
4, it becomes apparent that there was a systematic shock in Australia’s electricity market at the
beginning of 2007 causing monthly proportions of the spikes to reach the level of 60% in all the
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Table 4: Descriptive statistics of the actual and simulated prices (500 simulations).

actual simulated actual simulated
NSW QLD

mean 412.4 390.9 (55.97) 364.5 386.1 (39.76)
std 1237.9 1306.3 (174.9) 1037.9 1317.0 (128.2)

autocorr(1) 0.876 0.866 (0.004) 0.851 0.854 (0.004)
SA VIC

mean 474.5 452.3 (51.95) 263.3 232.6 (30.04)
std 1573.1 1488.6 (143.6) 878.3 893.6 (136.9)

autocorr(1) 0.812 0.799 (0.006) 0.853 0.827 (0.006)
Notes: Standard deviations of the characteristics for simulated prices
are reported in parentheses. Row “autocorr(1)” denotes the Spear-
man’s rank correlation between 1-lagged simulated spike magnitudes.

regions. Since explaining the occurrence of those systematic shocks is not the aim of statistical
models, we omit that period in modelling times of the spike occurrences covering only the period
over January 1, 2008–December 31, 2010 for estimation of the model, leaving the spikes happened
over January 1, 2011–December 31, 2011 for the out-of-sample evaluation. In Section 4.1 we define
spike durations and indicate their main features. A comparison of some existing approaches for
modelling times of spike occurrences is provided in Section 4.2. Section 4.3 introduces a new model
for spike durations. Estimation results are provided in Section 4.4.

4.1. Spike durations

Under a spike duration, or simply duration, we understand a time interval between occurrences
of two consecutive spike. In Australia’s electricity market, the smallest duration constitutes 30
minutes, – we shall refer to that duration as a unit duration and assign a value of one to it. Note that
the unit duration denotes the smallest time interval between occurrences of two consecutive spikes.
Time intervals of 60 minutes correspond to durations of two, intervals of 90 minutes correspond to
durations of three, and so on. Throughout the paper D1, D2, . . . , DN will denote a sample of N
consecutive (random) spike durations.

A major challenge of modelling spike durations in Australia’s electricity market lies in their
large variation and high proportion of unit durations (at least 62%), see Table 5, indicating a
strong persistence of the spike occurrences and a distinctive integer character of the durations.
There are many models in the literature which may capture those distinctive features of the spike
durations. In the next section, we compare the performance of some of those models.

Table 5: Descriptive statistics for the spikes durations.

NSW QLD SA VIC
mean 64.72 95.57 52.46 43.76

std 284.09 438.83 226.78 213.59
proportion of unit durations 0.68 0.62 0.69 0.67

number of observations 760 539 969 1168
Notes: spike durations are measured in units of 30 minutes.

4.2. Models for the spike durations

A well-known model for durations is the autoregressive conditional duration (ACD) suggested
by Engle and Russell (1998), see Bauwens and Hautsch (2009) for an overview of extensions and
applications of this model. Another suitable approach for duration (actual time) modelling is the
Hawkes process (Hawkes, 1971). Applications of the Hawkes process to modelling financial time
series can be found in Embrechts, Liniger, and Lin (2011), Aı̈t-Sahalia, Cacho-Diaz, and Laeven
(2011), Chavez-Demoulin, Davison, and McNeil (2005), Bowsher (2007).
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Figure 9: QQ-plot of the standardized durations (transformed by the theoretically implied distribution to the standard
exponential) of the estimated ACD models and the residual inter-arrivals times of the estimated Hawkes process.
The models were estimated on NSW spike durations occurred in the period over January 1, 2008–December 31, 2010.

To demonstrate the performance of the those approaches, we estimated four models on NSW
spike durations from the period over January 1, 2008–December 31, 2010: Exponential ACD(1,1),
Weibull ACD(1,1), Burr ACD(1,1) (Grammig and Maurer, 2000), and the univariate Hawkes process
with an exponential response function. As a measure of goodness-of-fit of the estimated models,
Figure 9 illustrates a plot of empirical quantiles of the standardized durations (transformed by
theoretically implied distribution into standard exponential) of the estimated ACD models and the
residual inter-arrivals times, see Embrechts, Liniger, and Lin (2011) for a definition, of the estimated
Hawkes process versus corresponding quantiles of the standard exponential distribution.

For a reasonable fit of the models one expects the standardized durations and the residual
inter-arrivals times to follow the standard exponential distribution. The QQ-plots indicate a strong
deviation from the standard exponential distribution suggesting that the estimated ACD models
and the Hawkes process are inappropriate for describing the spike durations (these estimation results
are similar to SA, QLD, and VIC regions). A possible reason for a poor performance of the ACD
model is its implied linearity of impact of past durations on the expected value of the future ones.
This linear structure of the conditional expectation may be insensitive to capture both the large
dispersion and the strong clustering behaviour of the spike durations. Furthermore, none of the
models can accommodate the prominent integer character of the spike durations, which clearly can
be observed as a sharp bend in the QQ-plots.

4.3. Negative binomial duration model

For description of the spikes durations we need a model which can reproduce their large variation
and strong clustering pattern, and, finally, be of a discrete nature as the spikes durations are. A
possible candidate which can meet those requirements is a model based on a negative binomial dis-
tribution. This distribution can be regarded as a gamma mixture of Poisson distributions, implying
that it always has a higher ratio of variance to mean than a corresponding Poisson distribution.
This feature is beneficial for modelling a large variation of the durations. A recent application of
the negative binomial model for time series can be found in Davis and Wu (2009).

A random variable X whose distribution is negative binomial with parameters r > 0 and p ∈
(0, 1) has the mean µ = r(1−p)

p , the variance σ2 = r(1−p)
p2 , and the probability mass function

fNB(k; r, p) := P (X = k) =
Γ(r + k)

Γ(k + 1) Γ(r)
pr(1− p)k, k = 0, 1, 2, . . . , (12)

where Γ(·) is the gamma function: Γ(k) =
∫∞
0
xk−1e−xdx. Note for a positive integer k, the gamma

function is related to the factorial by Γ(k) = (k − 1)!.
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4.3.1. Model description

For modelling durations we propose the following approach. Let D1, D2, . . . , DN , be a series of
(spike) durations. We assume that the conditional distribution of Di depends only on D1, . . . , Di−1
and it can be expressed in the following way

P
(
Di = k | Hti−1

)
= fNB(k − 1; r, pi), k = 1, 2, . . . (13)

where fNB(·; r, p) is a probability mass function of the negative binomial distribution, see (12), and
pi is a function of (D1, . . . , Di−2, Di−1). Recall that Hti−1

is a history of the first (i − 1) spikes
including their magnitudes (y1, . . . , yi−1) and times of occurrences (t1, . . . , ti−1). To account for
the strong persistence of the spike occurrences, we suggest the following parametrization for pi:

pi = ω + αDi−1pi−1, α ∈ (0, 1). (14)

This parametrization comes from a simple AR(1) process and is intuitive as it adjust the dependence
between two consecutive spikes to a time span between their occurrences: when Di−1 is small then
Di is almost identically distributed (provided α is close to 1); in case Di−1 is large, αDi−1 → 0
implying that pi−1 has a small contribution to pi.

4.3.2. Estimation

Estimation of model (13) is easily performed by the maximum likelihood method. With condi-
tional distribution (13) and probability mass function (12), the log-likelihood function of durations
D1, . . . , DN takes the form

L(D1, . . . , DN ; r, ω, α) =
N∑

i=1

(log Γ(r +Di − 1)− log Γ(r) + r log pi + (Di − 1) log(1− pi)) . (15)

Maximizing the likelihood we set a condition that a sample mean of durations D1, . . . , DN should
be equal to the expected value of their conditional distributions implied by the model, namely,
1
N

∑N
i=1Di = 1

N

∑N
i=1

(
1 + r 1−pipi

)
. This condition is quite useful as it allows to express r =

∑N
i=1(Di−1)∑N
i=1

1−pi
pi

and by this to reduce the number of parameters to be estimated from three parameters

to two: ω ans α. For the overall stability of the estimated model, it is necessary that the condition
pi ∈ (0, 1) (implied by definition (12)) holds. Expressing pi from (14) as

pi = ω
(
1 + αDi−1 + αDi−1+Di−2 + αDi−1+Di−2+Di−3 + . . .

)
,

it is easy to see that pi achieves its minimum of ω as Di−1 → ∞ and its maximum of ω
1−α as

Di−k = 1, for all k = 1, . . . , (i − 1). Since pi should lie within the unit interval, the following two
conditions on the parameter estimates should hold: ω > 0 and ω

1−α < 1.

4.3.3. Simulation and Goodness-of-fit

In this section we consider a simulation procedure and a goodness-of-fit test for the proposed
duration model. By considering the inverse of the negative binomial distribution function, it is
straightforward to simulate duration Di that follows model (13) in the following way

Di ∼ 1 + min [k : Ui ≤ FNB(k; r, pi)] , (16)

where Ui ∼ Unif[0, 1] and FNB(·; r, p) is a distribution function of the negative binomial distribution
with parameters r and p. Note that min [k : u ≤ FNB(k; r, p)] denotes an inverse of FNB(·; r, p) in
point u. To construct a sample of simulated durations, function pi+1 should be updated according
to (14) after each realization of Di, and then the realization of Di+1 can be found from (16).

Our approach to the goodness-of-fit test is based on the adaptation of the probability integral
transformation, discussed in the continuous case in Diebold, Gunther, and Tay (1998), to the
discrete case. Considering (16) in the way that Di (sample duration) and pi are known and Ui is
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unknown one can can reproduce Di from Ui, but vice versa it is not true, because the distribution
function of Di is discrete. The only information on series U1, U2, . . . , UN which can be extracted
from the sample data D1, D2, . . . , DN is that Ui satisfies

Ui ∼ Unif [FNB (Di − 2; r, pi) , FNB (Di − 1; r, pi)] , i = 1, 2, . . . , N. (17)

We shall refer to Ui defined above as a generator of Di.
In case D1, D2, . . . , DN really follow model (13), generators U1, U2, . . . , UN should constitute N

realizations from the uniform on [0, 1] distribution. In practice, therefore, the goodness-of-fit test
of the negative binomial duration model can be checked by testing the null hypothesis that the
sample of generators U1, U2, . . . , UN estimated according to (17) for a given sample of durations
follow the uniform on [0, 1] distribution. The goodness-of-fit can be checked either graphically using
QQ-plots, or formally using the Kolmogorov-Smirnov and Anderson-Darling tests. Note that since
for a fixed sample of durations D1, D2, . . . , DN the sample of estimated generators is random, the
testing of the null hypothesis should be conducted sufficient many times and then an non-rejection
rates of the null hypothesis should be analysed.

4.4. Estimation results

In this section we estimate the model of Section 4.3.1 on the spike durations from the four regions
of Australia’s national electricity market covering the period over January 1, 2008–December 31,
2010. The parameters estimates, with the 99% confidence intervals in parentheses, are reported in
Table 6. The confidence intervals are computed by using the profile log-likelihood function, because
simulations and practical experience suggest these intervals provide better results than those derived
by using the numerical Hessian matrix, see, e.g., Coles (2001). Note that the parameter estimates

Table 6: Parameter estimates of the negative binomial duration model estimated on the spike durations.

NSW QLD SA VIC
ω̂ ∗ 104 4.83 [3.67, 7.58] 4.01 [3.02, 6.02] 2.10 [1.53, 2.84] 2.13 [1.57, 2.92]
α̂ ∗ 10 6.93 [1.65, 8.79] 7.63 [3.85, 8.80] 9.91 [9.81, 9.95] 9.94 [9.88, 9.96]

r̂ 0.0541 0.0667 0.0605 0.0687
Notes: The profile log-likelihood function is used to compute the 99% confidence
intervals reported in squared parentheses right to the estimates.

meet the necessary conditions of the overall stability of the model, namely, ω̂ > 0 and ω̂
1−α̂ < 1.

In order to check the goodness-of-fit of the estimated model, we employ the procedure of Section
4.3.3 and test the hypotheses that the estimated generators, first, follow the uniform distribution
on [0, 1] and, second, exhibit no autocorrelation. Those hypotheses were tested with, respectively,
the Kolmogorov-Smirnov and Ljung-Box (10 lags) tests, which were conducted on 1000 different
realisations of the estimated generators. Table 7 reports the non-rejection rates of the conducted
tests with a significance level of 1%.

Table 7: Goodness-of-fit test: non-rejection rates (in %) of the Kolmogorov-Smirnov and Ljung-Box (10 lags) tests
with a significance level of 1% conducted on 1000 random samples of the estimated generators.

NSW QLD SA VIC
Kolmogorov-Smirnov 99.7 99.3 99.6 99.5

Ljung-Box(10) 75.8 92.9 40.4 26.4

When the estimated generators really follow the uniform on [0, 1] distribution, then the non-
rejection rate of the Kolomogorov-Smirnov test with 1% significance level would approximately be
99%, which exactly corresponds to the rates in the above table. The results of the Ljung-Box test are
less convincing but still in a high proportion of cases the generators can be assumed to have no au-
tocorrelation. In order to get a graphical presentation of the goodness-of-fit and to compare it with

the fit of models in Section 4.2, we transform a typical sample of estimated generators
(
Û1, . . . , ÛN

)
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Figure 10: QQ-plot of a typical sample of the estimated transformed generators. Compare this figure with Figure 9.

(which are supposed to be uniformly on [0, 1] distributed) into
(
− log Û1, . . . ,− log ÛN

)
(which are

hence supposed to have the standard exponential distribution) and plot its quantiles versus quan-
tiles of the standard exponential distribution, see Figure 10. Comparing this QQ-plot with that
of Figure 9, one can observe a clear improvement in the fit of the estimated model to the spike
durations.

Verifying accuracy of the estimated duration models, we have simulated 500 samples of durations
(of the same length as the original ones) and compared their characteristics to those of the original
spike durations. Simulation results are summarized in Table 8. The characteristics of the simulated

Table 8: Descriptive statistics of the actual and simulated durations (500 simulations).

actual simulated actual simulated
NSW QLD

mean 64.72 65.24 (10.90) 95.57 97.64 (19.75)
std 284.09 291.57 (65.11) 438.83 400.01 (103.43)

proportion of unit durations 0.683 0.685 (0.018) 0.622 0.621 (0.021)
SA VIC

mean 52.46 53.92 (14.20) 43.76 49.97 (13.06)
std 226.78 301.92 (116.15) 213.59 275.56 (115.77)

proportion of unit durations 0.689 0.680 (0.019) 0.666 0.656 (0.018)
Notes: The length of the simulated samples corresponds to the length of the original
durations, see Table 5.

data are very close (in the range of one standard deviation) to those of the initial sample indicating
the ability of our model to produce realistic simulations of spike durations. The major reason for
some inconsistencies in the simulated data lies in the large variation of durations implied by the
model, for example, with parameters estimates of the VIC region, the implied standard deviation of
the duration varies from 7.6 to 1230.2 (depending whether pi approaches respectively its maximum
or minimum value). On the other hand, exactly that feature in combination with the dynamic
structure of the model is necessary in reproducing the high variation of the spike durations.

5. Forecasting extreme electricity prices

For good risk management at electricity markets it is essential to accurately forecast extreme
electricity prices in order to prevent unexpected losses. In this section we combine the results from
Section 3, modelling magnitudes of the spikes, and Section 4, modelling the spike durations, into
one model for forecasting extreme electricity prices.

5.1. Forecasting approach

The estimated in Section 4.4 duration model readily lends itself for estimating the probability
of price spikes conditional on their past. The probability that a spike occurs at time t conditional
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Figure 11: The conditional probability of a spike occurrence on the four regions of Australia’s electricity market. The
probability was estimated according to (18) with parameters values from Table 6. pi was set on its max achievable
value: pi = 0.0016 for NSW; pi = 0.0017 for QLD; pi = 0.0232 for SA; pi = 0.0335 for VIC.

the last spike with duration Di−1 happened at time ti−1 can be expressed as

P(spike occurs at time t | Ht−1) =
P(Di = t− ti−1 | Ht−1)

P(Di > t− ti−1 − 1 | Ht−1)
,

where Di follows model (13), Ht−1 is an information set consisting of times (t1, . . . , ti−1) and
magnitudes (y1, . . . , yi−1) of the spikes up to time (t − 1). In terms of model (13) the above
probability takes the form

P(spike occurs at time t | Ht−1) =
fNB (t− ti−1 − 1; r, pi)

1− FNB (t− ti−1 − 2; r, pi)
, (18)

where FNB(·; r, p) is a distribution function of the negative binomial distribution with parameters
r and p; fNB(·; r, p) is the corresponding probability mass function. Figure 11 illustrates the above
conditional probability calculated with the parameters estimates of Table 6. Note that for the cal-
culation of the conditional probabilities on the plot, we set parameter pi on its maximum achievable
value in order to get the maximum achievable conditional probabilities of spike occurrences.

Equation (18) provides a conditional probability that a spike occurs, i.e., that electricity price
exceeds the diurnal threshold defined in Section 2. Surely, the electricity market participants may be
interested in probabilities that the prices exceed other thresholds: a common example is a price level
of 300AUD/MWh which is the strike price of heavily-traded cap products in Australia’s electricity
market. Designing an approach to estimate those probabilities, one can informally express the
probability of the price to exceed some threshold y (provided it is higher than the diurnal threshold)
in the following way

P(price at time t exceeds y | Ht−1) =

P(spike occurs at time t | Ht−1)P(price at time t exceeds y | spike occurs at time t,Ht−1).

Combining the model of Section 3 for the spike magnitudes (see Eq. (4)), and the model of Section
4.3 for the spike durations (see Eq. (18)), the above probability takes the form

P(price at time t exceeds y | Ht−1) =

fNB (t− ti−1 − 1; r, pi)

1− FNB (t− ti−1 − 2; r, pi)

[
1 +

gt(y − thm(t))
θt/ξm(t) − 1

gti−1(yi−1)θt/ξm(ti−1)

]−(1/θt+1)

(19)

where ti−1 is the time of the last up to time (t − 1) spike occurrence, yi−1 is the magnitude of
that spike; gt(y) = 1 + ξm(t)

y
βn(t)

, where ξm(t) and βn(t) denote parameters of the GPD used for

modelling the magnitude of the t-th observation; θt = γ0(t− ti−1)−γ1 , and thm(t) denotes the value
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of diurnal threshold corresponding to the t-th observation; finally, m(t) and n(t) denote a function
that identifies, respectively, to which part of the day where the shape parameters are assumed
equal or to which out of 48 half-hour periods of the day the t-th observation belongs. For a further
explanation of the parameters see Section 3.1 and Section 4.3.1.

Model (19) for forecasting the probability of extreme price occurrences provides two beneficial
features. First, although the model is estimated on the price exceedances over the diurnal threshold
(this approach yields sufficient number of observation for the estimation), the model can provide
probabilities of the prices to exceed any higher levels without a need for re-estimation of the model.
Second, (19) suggests a mechanism how spikes, defined as price exceedances over the comparatively
small diurnal threshold, may trigger the occurrence of price exceedances over much higher thresholds
than the diurnal one. This relationship is provided in two channels: first, spike occurrence triggers
the occurrence of further spikes through (14); second, magnitude yi−1 of the last spike impacts the
conditional distribution of the magnitude of the next spike through (4).

5.2. Out-of-sample forecasting performance

As it was noted in Section 4, the period over January 1, 2011–December 31, 2011 of the data
of electricity prices was left for the out-of-sample forecasting evaluation. Note that this evaluation
requires computation of (19), which, in turn, requires the estimates of the model for spike mag-
nitudes reported in Table 2. Although those estimates were obtained analysing the whole sample
of spikes, excluding the out-of-sample period in modelling of the magnitudes does not significantly
affect the out-of-sample forecasting results of this section.

In order to analyse the forecasting performance of the model presented in this paper, we adopt
the procedure suggested in Eichler, Grothe, Manner, and Tuerk (2012). In that study, the out-of-
sample performance of seven different models was compared based on their ability to make 1-step
ahead forecasts of electricity prices to exceed 300AUD/MWh (and 100AUD/MWh) analysing the
same dataset as we use for this out-of-sample evaluation. According to that study, a sample of
forecasted price exceedances over 300AUD/MWh was constructed using the true history of the
process in the way that for each period when the estimated probability exceeds the value of 0.5
then a price exceedances was forecasted. The forecasting performance of the models was compared
based on the correct detection rate (CDR), the ratio between correctly detected and the observed
spikes, and the false detection rate (FDR), the ratio between falsely detected and the total number
of detected spikes.

Using our model for forecasting exceedances of the electricity prices over 300AUD/MWh, we
changed slightly the procedure of deciding whether an exceedance was forecasted. Since our duration
model is based on a discrete distribution, it cannot provide probabilities filling the whole interval of
[0, 1], contrary to the models in Eichler, Grothe, Manner, and Tuerk (2012). To analyse accurately
the performance of our model, we adjust the probability level, exceeding which we decide whether
the price exceedance occurs, from 0.5 to one half of the maximum spike probability that our model
can provide (see probabilities at t− ti−1 = 1 on Figure 11). For example, with parameter estimates
for VIC region, that probability threshold is approximately equal to 0.4.

Table 9 provides the out-of-sample performance of the models in forecasting the electricity prices
to exceed the level of 300AUD/MWh. We compare the performance of our model to the best models
analysed in Eichler, Grothe, Manner, and Tuerk (2012). The best models were chosen (for each
region) based on two criteria: the model with the best (i.e., maximum) CDR and the model with
the best (i.e., minimum) FDR. Corresponding columns that refer to those models are denoted as
“Best CDR” and “Best FDR”. Note that those models are not the same for each of the regions.

An ideal model for spike forecasting provides CDR= 100% and FDR= 0%. In practice, however,
there is often a trade-off between the high CDR and the low FDR. From Table 9 it is apparent
that the performance of our model is always somewhere in the middle compared to performance of
the other models analysed in the table: our model provides either a higher CDR or a smaller FDR.
The only exception constitutes the performance of our model for the VIC region.

Table 9 provides only a limited assessment of the forecasting performance of our model, because
it is suited to estimate probabilities of the prices to exceed any sufficiently high level, not just
the level for which the model was estimated. As a demonstration of that feature, we estimated
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Table 9: Out-of-sample performance of the models in forecasting electricity prices exceeding 300AUD/MWh.

Our model Best CDR Best FDR Our model Best CDR Best FDR
NSW QLD

exceedances 38 38 38 37 37 37
detections 58 77 38 43 30 30

CDR 84.2 94.7 76.3 59.5 54.1 54.1
FDR 44.8 53.6 23.7 48.8 33.3 33.3

SA VIC
exceedances 29 29 29 11 11 11

detections 25 29 12 10 10 10
CDR 48.3 55.2 34.5 54.6 63.6 63.6
FDR 44.0 44.8 16.7 40.0 30.0 30.0

Notes: rows “exceedances” and “detections” denote respectively the number of the actual and
forecasted prices exceeding the level of 300AUD/MWh. Columns with headings “Best CDR” and
“Best FDR” refer to the models with respectively maximum CDR and minimum FDR analysed in
Eichler, Grothe, Manner, and Tuerk (2012). CDR and FDR are reported in %.

1-step ahead probabilities of the electricity prices to exceed different price levels: 500AUD/MWh,
1000AUD/MWh, 2000AUD/MWh, and 5000AUD/MWh, – and, applying the same procedure as
used for construction of Table 9, we evaluated the out-of-sample forecasting performance of our
model. Table 10 provides the evaluation results. Unexpectedly, but the forecasting performance of
the model for higher price threshold was only slightly decreased compared to the results in Table
9. Moreover, for some regions the duration model showed even better results, for example, for SA
region, eight from nine spikes over 5000AUD/MWh were correctly forecasted (in the sense that the
probability exceeds some level).

This ability to forecast the electricity price exceedances over high thresholds is a unique and
valuable feature of our model. Other approaches for modelling extreme electricity prices can expe-
rience estimation problems because very few data may be available fitting the model to the prices
that exceed very high thresholds. For example, in Australia’s electricity market, in the period over
January 1, 2002–December 31, 2010, there were only a few out of 157728 observations when the
electricity prices exceed the level of 5000AUD/MWh: 99 in NSW, 72 in QLD, 135 in SA, and 45
in VIC.

Table 10: Out-of-sample performance of our model in forecasting electricity prices exceeding 500AUD/MWh,
1000AUD/MWh, 2000AUD/MWh, and 5000AUD/MWh levels.

NSW QLD SA VIC NSW QLD SA VIC
500AUD/MWh 1000AUD/MWh

exceedances 30 28 24 8 30 23 22 8
detections 34 29 23 8 28 24 22 7

CDR 70.0 50.0 54.2 62.5 63.3 56.5 50.0 50.0
FDR 38.2 51.7 43.5 37.5 32.1 45.8 50.0 42.9

2000AUD/MWh 5000AUD/MWh
exceedances 22 19 19 5 13 8 9 3

detections 22 17 13 5 11 5 9 2
CDR 63.6 63.2 42.1 40.0 61.5 62.5 88.9 33.3
FDR 36.4 29.4 38.5 60.0 27.3 0 11.1 50.0

Notes: rows “exceedances” and “detections” denote respectively the number
of the actual and forecasted price exceedances. CDR and FDR are in %.
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6. Conclusions

This study presents a model for forecasting extreme electricity prices in real-time (high fre-
quency) settings. The model consists of two components (sub-models) which deal separately with
times of occurrence and magnitudes of extreme electricity prices. We employ a copula with a chang-
ing dependence parameter for capturing serial dependence in the magnitudes of extreme electricity
prices and the censored GPD distribution for modelling their heavy tails. For modelling times of
the extreme price occurrences, we propose an approach based on the negative binomial distribution.
For both of the sub-models, the simulation procedure and the goodness-of-fit test are presented.

The model is applied to half-hourly electricity prices from the four regions of Australia’s national
electricity market embracing the period over January 1, 2002–December 31, 2011. The simulation
studies and the goodness-of-fit tests indicate an ability of our model in capturing the main char-
acteristics of extreme electricity prices. In particular, our approach to times of the extreme price
occurrences outperforms the ACD models and the Hawkes process. The out-of-sample evaluation
also indicates a convincing performance of our model in forecasting the prices to exceed very high
thresholds.

A promising direction for a future research is to consider a multivariate approach for modelling
extreme electricity spot prices. That suggestion is motivated by the fact that in interconnected
regional markets, spikes in one region tend to trigger the occurrence of spikes in the other regions.
Multivariate approaches can capture those interdependences and describe the contagion effects of
extreme electricity prices.
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